

LA Appendage Occlusion Devices: Do they have a role?

Ronald Berger, MD, PhD Johns Hopkins University

MY CONFLICTS OF INTEREST ARE:

Consultant: Boston Scientific, Zoll Royalties: Zoll Educational Grants: Boston Scientific, Medtronic, St Jude, Biosense Webster

Stroke Risk in Atrial Fibrillation

scoring system, with the acronym CHA ₂ DS ₂ -VASc (Note: maximum score is 9 since age may contribute 0, 1, or 2 po				
Risk factor	Score			
Congestive heart failure/LV dysfunction	1			
Hypertension	1			
Age ≥75	2			
Diabetes mellitus	1			
Stroke/TIA/thrombo-embolism	2			
Vascular disease ^a	1			
Age 65-74	1			
Sex category (i.e. female sex)	1			
Maximum score	9			

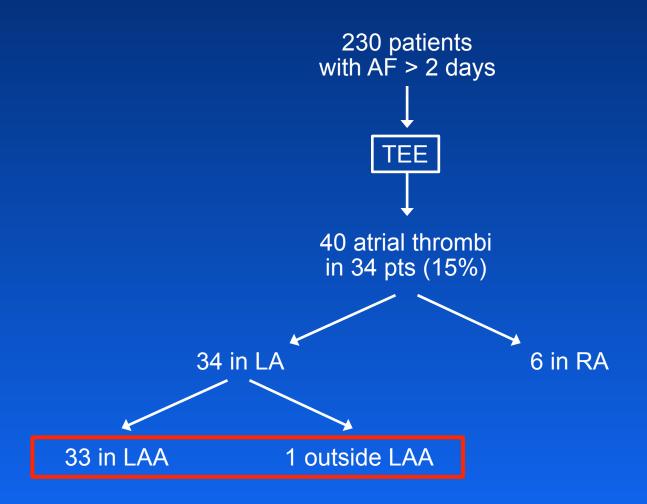
(c) Adjusted stroke rate according to CHA2DS2-VASc score					
CHA,DS,-VASc score	Patients (n=7329)	Adjusted strok rate (%/year) ^l			
0	1	0%			
1	422	1.3%			
2	1230	2.2%			
3	1730	3.2%			
4	1718	4.0%			
5	1159	6.7%			
6	679	9.8%			
7	294	9.6%			
8	82	6.7%			
9	14	15.2%			

Bleeding Risk in Atrial Fibrillation

Table 10 Clinical characteristics comprising the HAS-BLED bleeding risk score

Letter	Clinical characteristic*	Points awarded
н	Hypertension	1
A	Abnormal renal and liver function (1 point each)	l or 2
s	Stroke	4
В	Bleeding	1
L	Labile INRs	1
E	Elderly (e.g. age >65 years)	1
D	Drugs or alcohol (I point each)	I or 2
		Maximum 9 points

Risk Factors/ Score	N	Number of Bleeds	Bleeds per 100 Patient- Years
0	798	9	1.13
1	1286	13	1.02
2	744	14	1.88
3†	187	7	3.74
4	46	4	8.70
5	8	1	12.50
6	2	0	0.0
7	0		—
8	0	—	—
9	0	—	—
Any Score	3071	48	1.56
<i>P</i> -Value for Trend			.007

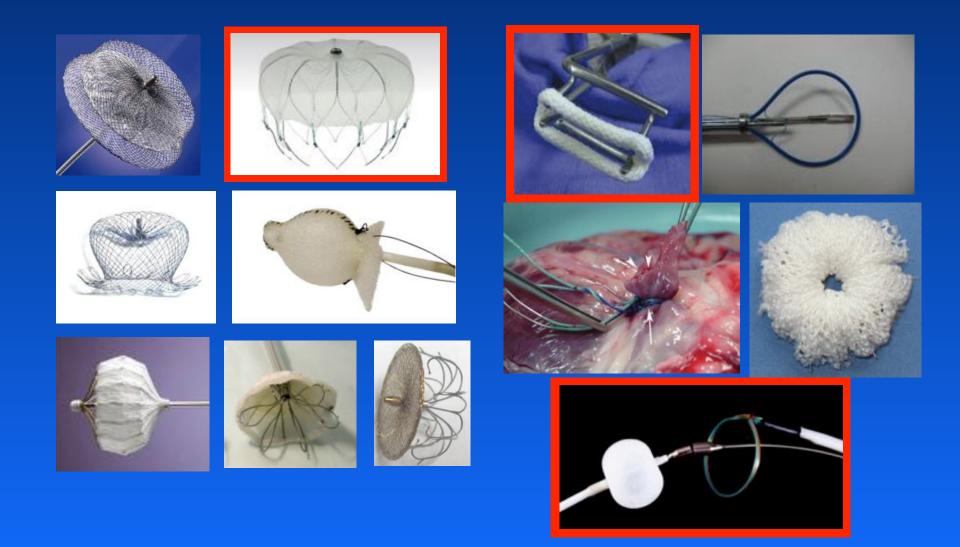

Conundrum of Concurrent CVA and Bleeding Risks

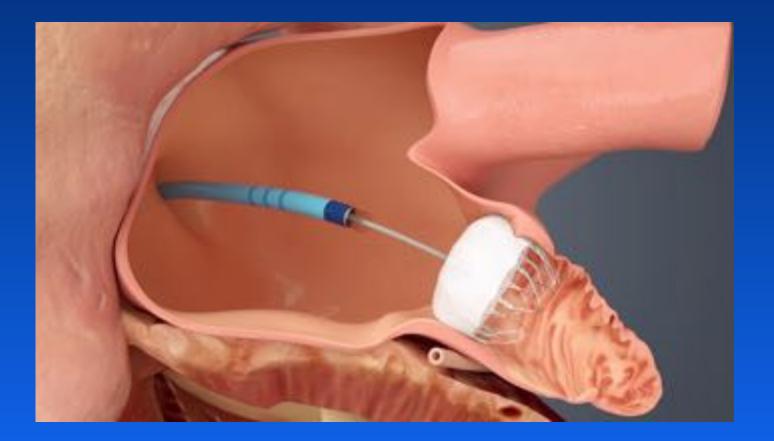
Risk factor	Score
Congestive heart failure/LV dysfunction	1
Hypertension	1
Age ≥75	2
Diabetes mellitus	1
Stroke/HA/dirombo-embolism	2
Vascular disease ^a	1
Age 65-74	1
Sex category (i.e. female sex)	1
Maximum score	9

Table 10 Clinical characteristics comprising the HAS-BLED bleeding risk score

Letter	Clinical characteristic*	Points awarded
-#-(Hypertension	1
A	Abnormal renal and liver function (I point each)	l or 2
-5-(Stroke	4
в	Bleeding	1
L	Labile INRs	1
E	Elderly (e.g. age >65 years)	1
D	Drugs or alcohol (I point each)	1 or 2
		Maximum 9 points

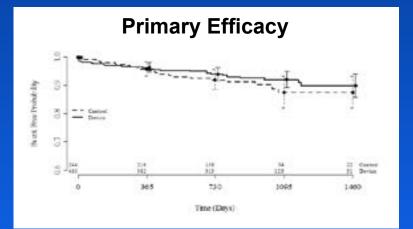
The Left Atrial Appendage is the Culprit

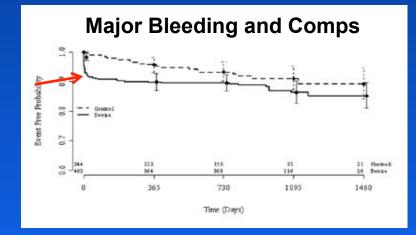

Manning et al, JACC 1995; 25:1354-61


Surgical Closure of Left Atrial Appendage

Type of Closure	n	Patent LAA	Remnant LAA	Excluded LAA With Persistent Flow	Successful LAA Closure
Excision	52	0	14 (27%)	0	38 (73%)*
Suture exclusion, n (%)	73	6 (8)	6 (8)	44 (61)	17 (23)*
Stapler exclusion, n (%)	12	2 (17)	7 (58)	3 (25)	0 (%)†
Total, n (%)	137	8 (6)	27 (20)	47 (34)	55 (40)

Kanderian et al, JACC 2008; 52:924-9

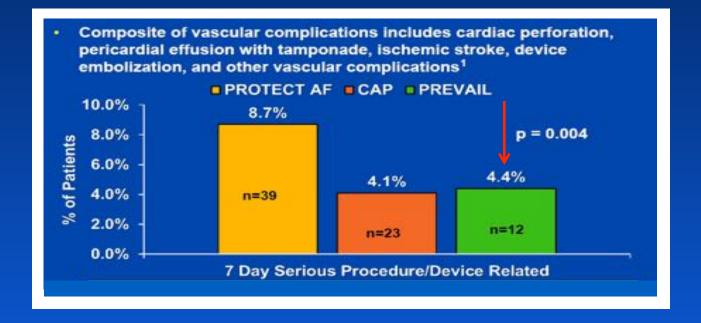

Left Atrial Appendage Closure



Left Atrial Appendage Closure – Watchman PROTECT AF Study

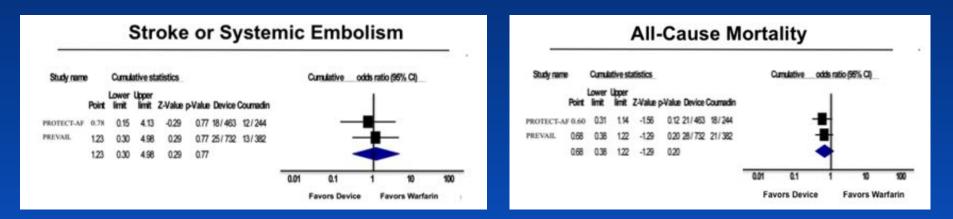
- 707 patients with non-valvular AF and CHADS score ≥ 1
- 59 sites in US and Europe
- Randomized 2:1 Watchman vs warfarin
- 1° endpoint: stroke, systemic embolism, CV death

Noninferiority criteria met.

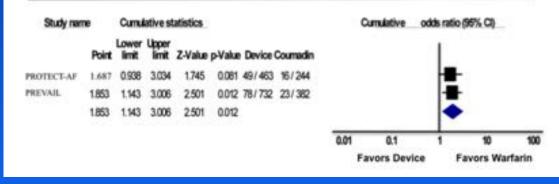


Excess complications in device arm. FDA required additional study.

Reddy et al, Circ. 2013; 127:720-9


PREVAIL Study

- 407 patients with non-valvular AF and CHADS-VASC score ≥2
- •41 U.S. sites with 25% enrollment by new operators
- Randomized 2:1 Watchman vs warfarin
- 1° endpoints:
 - · 7-day death, stroke, systemic embolism, major complication
 - · 18-month stroke, systemic embolism, CV death
 - · 18-month stroke, systemic embolism



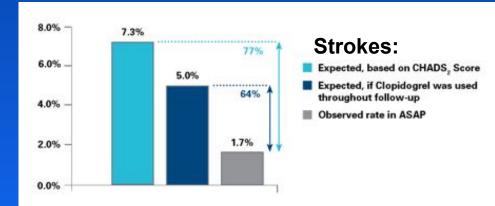
- 2nd FDA panel in Dec 2013 voted 13-1 in favor, but FDA asked for further f/u data.
- 3rd FDA panel in Oct 2014 voted 7-6 in favor of approval.
- FDA approval in March 2015

Holmes et al, ACC 2013

Major Bleeding or Procedure Related Complications

Briceno et al, Circ. A&E 2015

FDA Approval:


- Indicated for patients with non-valvular Afib with increased risk of stroke
- Suitable for warfarin, but have an appropriate rationale to seek a non-pharmacologic alternative to warfarin

Recommended Mgt:

- Warfarin (INR 2-3) for 45 days post-procedure
- TEE at 45 days
- Then clopidogrel 75 mg qd for 6 months, and ASA indefinitely

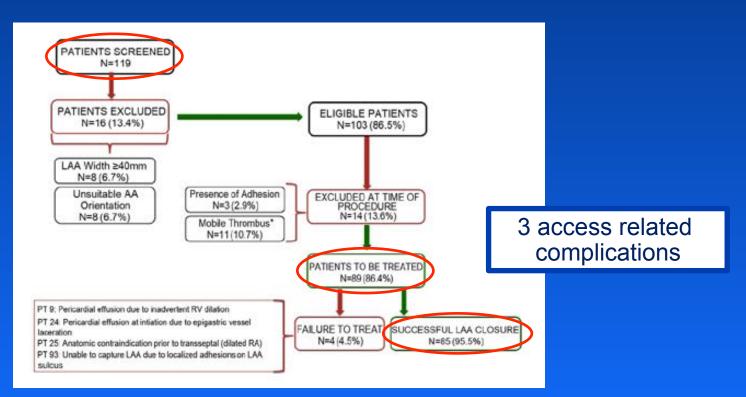
ASAP Study

- 150 patients with non-valvular AF and CHADS-VASC score ≥1
- Contraindication to even short-term anticoagulation
- Received 6 months of treatment with clopidogrel or ticlopidine and lifelong ASA

Table 3	Procedure and Device-Related Serious Adverse Events ($N = 150$)	
Device emi	polization	2 (1.3%)
Pericardial	effusion with tamponade (percutaneous drainage)	2 (1.3%)
Pericardial	effusion, no tamponade (no intervention required)	3 (2.0%)
Device thro	mbus with ischemic stroke*	1 (0.7%)
Femoral ps	eudoaneurysm (surgically repaired)	1 (0.7%)
Femoral he	matoma/bleeding	2 (1.3%)
Other		3 (2.0%)
Total patier	nts with procedure- and device-related SAEs	13 (8.7%)

Reddy et al, JACC 2013; 61:2551-6

May, 2009: FDA granted 510K approval:


We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The

Intended Use:

The LARIAT II Suture Delivery Device facilitates suture placement and knot tying for use in surgical applications where soft tissue are being approximated and/or ligated with a pre-tied polyester suture.

Permanent Ligation Approximation Closure Exclusion (PLACE) Study

- Sponsor: SentreHeart
- Single center (Krakow, Poland) single-arm study
- 119 pts with non-valvular AF and CHADS score ≥1
- Poor candidate or ineligible for warfarin therapy

Permanent Ligation Approximation Closure Exclusion (PLACE) Study

Successful lightion	85 (96%)		
Complications	3 (3.3%)		
Device related	0 (0%)		
Access related	3 (3.3%)		
Pericardial access	2 (2.2%)		
Transseptal access	1(1.1%)		
inability to complete ligation	1.000		
Pericordial adhesions in LAA selcus	1(1.1%)		
End-of-procedure closure (n = 85)			
Complete or <1-mm leak	82 (96%)		
<2-mm look	2 (3%)		
<3-mm leak	1(1%)		
1 day post-procedure closure by TEE (n = 85)			
Complete or <1-mm leak	81 (95%)		
<2-mm leak	3 (4%)		
<3-mm leak	1(1%)		
30 days post-procedure closure by TEE (n = 85)			
Complete or <1-mm leak	81 (95%)		
<2-mm leak	3 (4%)		
<3-mm leak	1 (1%)		

Bartus et al, JACC 2013; 62:108-18

8-Center Retrospective Analysis – 154 Patients

Age (yrs)	72.1 ± 9	
Age >75 yrs	70 (45)	
Male	96 (62)	
Hypertension	125 (81)
Diabetes mellitus	56 (36	6)
History of heart failure	53 (34	0
Peripheral arterial disease	21 (
Prior CVA/TIA	58 (
Prior hemorrhagic CVA	21 (
Prior major bleed or propensity for bleeding	96 (
Labile INR measurements	31 (
Concomitant chronic NSAID use	22 (
Liver disease	9(
Renal disease	14 (
Significant alcohol consumption	16 (
CHADS ₂ score	3 (
CHA2DS2VASC score	4(
HAS-BLED score	3 (
CHADS ₂ score	2.8 ±	
CHA2DS2VASC score	4.1 ±	
HAS-BLED score	3.2±	

Successful LAA closure with residual leak <5 mm: 94%

	the Study Population (n – 154)*	
	Major bleed	34 (5
	Any transfusion with overt bleeding	76
BLE	4 Medical Therapy at Discharge After	6
	atheter Left Atrial Appendage Ligation	
pirin	monotherapy	47 (31)
ual ar	ntiplatelet therapy	37 (24)
al an	nticoagulation	36 (23)
Warf	farin	24 (16)
Rivar	roxaban	7 (5)
Dabi	gatran	5 (3)
o anti	iplatelet or oral anticoagulation	29 (19)
opido	ogrel monotherapy	11 (7)
opidogrel monotherapy Igrenox		1 (0.6)

Price et al, JACC 2014; 64:565-72

Lariat vs Watchman

Observational study – Lariat at 6 centers, Watchman at 2 centers

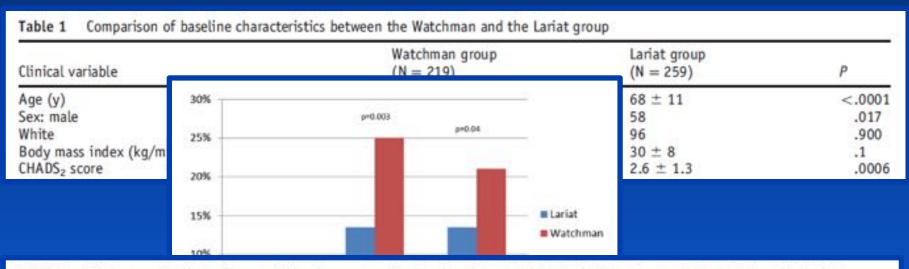


Table 4 Differences in the incidence of thrombus or transient ischemic attack (TIA)/stroke in patients with and without leaks in the Watchman and Lariat groups

Leaks	Watchman group (N	= 219)	Lariat group (N = 259)
	Leak	No leak	Leak	No leak
	(n = 46)	(n = 173)	(n = 33)	(n = 222)
Thrombus (n)	2	6	2	2
TIA/stroke (n)	1	2	1	2
	(thrombus)		(no thrombus)	
Noncerebral embolism (n)	ò	0	ò	0

Pillarisetti et al, Heart Rhythm 2015;12:1501-7

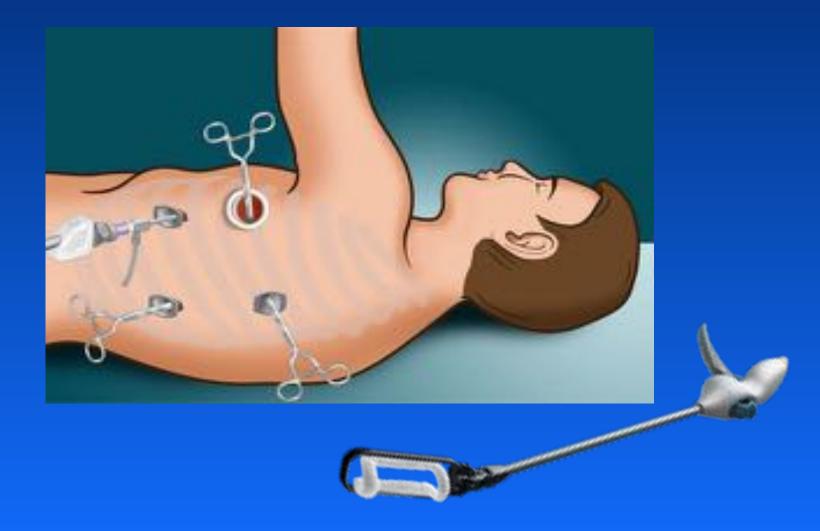
Left Atrial Appendage Closure

	PROS	CONS
Transcatheter LAA ligation (Lariat)	 No device left behind One size fits all 	 Anatomic exclusions Requires pericardial access Peri-procedural complications, including PE, ventricular perforation, pericarditis Possible late central leak Possible late stump thrombus Optimal post-procedural medication unknown, short-term OAC appears reasonable Lack of long-term safety and efficacy data
Transcatheter device occlusion (Watchman)	 Trans-septal access only Long-term safety and efficacy data from RCTs Post-procedural medication (short-term OAC) well-evaluated in RCTs 	 Anatomic exclusions Peri-procedural complications, including PE, air embolism, and device embolization Possible late edge leak Possible late device thrombus

Price et al, JACC 2014; 64:565-72

LAA Closure – Gillinov-Cosgrove Clip

June, 2010: FDA granted 510K approval:


Intended Use

The AtriClip LAA Exclusion System is indicated for the occlusion of the left atrial appendage, under direct visualization, in conjunction with other open cardiac surgical procedures.

LAA Closure – Gillinov-Cosgrove Clip EXCLUDE Trial

		Efficacy end points	% (n/N)
Surgical procedure		Procedural success	95.7 (67/70)
CABG	100	by visual assessment	97.1 (68/70)
Mitral valve At 12		th follow-up:	95.7 (67/70)
Repair	• 2 stroke	2 strokes (not thromboembolic) 30% on warfarin	
Replacement	• 30% ON		
	• 30% ON	C1 evaluation by core laboratory	98.2 (55/56)
Tricuspid valve Repair Aortic valve	• 30% ON		98.2 (55/56) 100 (5/5)

Video-Assisted Thoracoscopic Surgery (VATS)

Left Atrial Appendage Closure

Recommendations	Class*	Level ^b	Ref ^c
Interventional, percutaneous LAA closure may be considered in patients with a high stroke risk and contraindications for long- term oral anticoagulation.	ШЬ	в	115,118
Surgical excision of the LAA may be considered in patients undergoing open heart surgery.	нь	c	

Recommendations for LAA closure/occlusion/excision

Eur Heart J 2012; 33:2719-47

AHA/ACC/HRS: 1 Surgi

1. Surgical excision of the LAA may be considered in patients undergoing cardiac surgery. (Level of Evidence: C)

ESC:

JACC 2014; 64:e1-e76

Conclusions

- LAA closure emerging as alternative to OAC.
- Watchman shown equivalent to OAC (warfarin) in RCTs, but trades off implant bleeding/complications for long-term stroke prevention.
- Watchman FDA approved for OAC eligible patients, and short-term OAC recommended post-implant.
- Lariat FDA approved (510K) as tissue closure device. No hardware left behind. Presumably can be used when even short-term OAC is contraindicated, but RCTs are lacking.
- Gillinov-Cosgrove AtriClip attractive option with concomitant cardiac surgery, or standalone with VATS. Post-procedure OAC regimen remains unclear.

