

LONG-TERM RESULTS OF AF ABLATION IN PARTICULAR SETTINGS

Dr. Marco Scaglione

Division of Cardiology - Asti

University of Turin - Italy

Patients included into AFib Ablation trials

... the others...

1- Dilatation of left atrium

Beukema WP. Circulation 2005; 112:2089 Berruezo A. Eur Heart J 2007; 28:836 Montefusco A, JCM 2010 Di Donna P. Europace 2010; 12:347

2-Duration of atrial fibrillation

Della Bella Europace 2005; 7: 95 O' Neill M. E HJ 2009; 30:1105

Balk E. JCE 2010, Vol pp. 1-9 Rostock T. et al. Heart R. 2011 889 patients underwent AFTCA mean age 57± 11years;
53.3% parox AF, 40.5% persist AF, 6.2% long-standing AF). F-up of 64 months (range 41–84 years)
AF progression despite AFTCA occurred in 57 cases (6.4%).
Independent predictors of progression: comorbidities/ cardiomyopathies and baseline persistent/long-standing AF (odds ratio 11.3, 95% confidence interval 2.6–48.0, P o.001, and odds ratio 1.6, 95% confidence interval 1.2–2.1, P o.001, respectively).

Scaglione et al. Heart Rhythm 2014

Very long-term outcome after initially successful catheter ablation of atrial fibrillation

Jonathan S. Steinberg, MD, FHRS, Rachel Palekar, BA, Tina Sichrovsky, MD, Aysha Arshad, MD, Mark Preminger, MD, Dan Musat, MD, Richard E. Shaw, PhD, Suneet Mittal, MD, FHRS

Persistent AF Hypertension

Heart Rhythm 2014

...the others... Who are they?

Elderly patients Valvular heart disease OSAS COPD GUCH

AGE and AF TROUBLES

Co-morbidity Higher TE and bleeding risk

Persistent > Paroxysmal

Etiopatogenesis

Drugs: side effects

Clinical characteristics in elderly patients

Study	N. Of pts	Age (Years)	Male	AF type	LA size (mm)	SHD	Comparisons
Bhargava et al. (2004)	103	>60 (66.6 ± 4.18)	77%	PAF (52%) Pers. (8%) Perm. (40%)	43.4 ± 0.6	63%	Age <50, ≤60
Oral et al. (2004)	24	>70 (73 ± 2)	54 % *	All PAF (88%)	42±7	N/A	Age <70
Hsieh at al. (2005)	37	≥65 (72 ± 4)	92%	PAF	37 ± 5	62%	AVJ ABL + pacing
Hsu et al. (2005)	22	≥65	59%*	Perm.	49 ± 3	36%	Age <45, ≤45, <65
Zado et al. (2008)	34	≥75 (77 ± 2)	44%*	All PAF (53%)	44 ± 10	88%*	Age <65, ≤65, <75
Corrado et al. (2008)	174	≥75	63%	All PAF (55%)	46 ± 6	68%	None
Spragg et al. (2008)	83	≥70	N/A	PAF pers.	N/A	N/A	Age <70
Bunch et al. (2010)	35 (717)	≥80	45%	PAF (46%) / pers	24 ± 9	31%	Age <80
*p <0.05							

AF Ablation in the Elderly: Results from 7 retrospective studies

434 pts > 70 years / 3935 total population (11%)

Impact of Age on the Outcome PVI for AF Ablation

Zado E. et al. JCE 2008

Outcome of AF ablation during 1 Y follow up PVI-lines

Bunch et al. PACE 2010

Blandino A, Scaglione M, Gaita F et al JCE Vol. 24, pp. 731-738, July 2013

Zado E. et al. JCE 2008

VALVULAR HEART DISEASE AND PROSTHESES

St. JUDE

Few articles

Conclusion: CPVI combined with CFAE ablation was safe and efficacious for persistent AF treatment in patients with VHD. The outcome was comparable with that in patients without VHD. More *x*-ray exposure was needed to avoid valve prosthesis impairment.

1547-5271/\$ -see front m	atter © 2004 Heart R	hythm Society. All right	ghts reserved.
doi:10.1016/j.hrthm.2004.	02.007		

		Lone Ar	uisease	
	Fluoroscopy time (min) Procedure time (h) Mean number of RF	83 ± 26 4 ± 1	$85 \pm 20 \\ 4 \pm 1$	8
	lesions/PV (min)	9.4 ± 3.4	$\textbf{9.7}\pm\textbf{2.6}$	9.
	p = not significant. AF = atrial fibrillation; F	PV = pulmonary	y vein; RF = rad	diofr
Kh	ajkin et al Heart 🛛	Rhythm	2004	

Patient demographics and clinical characteria shown in Table 1. Of 391 patients, 197 (50%) patients structural heart disease, including 94 (24%) patient LV dysfunction, defined as ejection fraction belo 102 (26%) with known clinically significant valv

Table 2 Pulmonary vein isolation and follow-up res

		Valve	
	Lone Ar	uisease	CV
Procedure time (h)	03 ± 20 4 ± 1	05 ± 20 4 ± 1	8
Mean number of RF lesions/PV (min)	9.4 ± 3.4	9.7 ± 2.6	9.
n = not significant			

p = not significant.

AF = atrial fibrillation; PV = pulmonary vein; RF = radiofr

Cleveland, Ohio; and †Sutter Pacific Heart Centers, San Francisco, California. Manuscript received August 23, 2004; revised manuscript received October 20, 2004, accepted November 15, 2004. procedure, leaving 63 patients in 1, age 57 \pm 13 years, 12 female). (patients, 189 were excluded becau

other (6-9). Also, a considerable Winther of patients Ithou	tfrom areas other th
AF recurrence after ablation of typical AFL (16). The	AFL if the approp
reasons for co-existence are not entirely clear, but it is	(21,22). Indeed, it
possible that PV triggers may initiate AFL as well as AF, or	mature atrial beats
may convert AFL to AF (7,10,11). We have reported, for	AFL (9,23,24). Bec
overpla, that in patients with both typical AFL and AF	arrhythmogenic sul
PVAI alone was sufficient to control both arrhythmias (10).	currence as a result
The results presented in this series are consistent with our	Early recurrence
previous report. Indeed, 94% (219 of 234) of patients who	PVAI for the firs
had pre-existing AFL were cured by PVAI alone in the	transient finding ar
control group (Group 2). In contrast, only 15 of 24 PCS	(10,12). In the stud
patients (63%) with pre-PVAI AFL were free of AFL after	AFL recurrence (v
PVAI. Furthermore, 21 (33%) PCS patients experienced	PVAI procedure) v
AFL occurrence after PVAI. I hese results demonstrate that	term AFL recurren
the elimination of PV triggers may not prevent the occur-	present study, 189

rence of the L in a significant number of patients with 1 Co. previous 1

Kilicaslan et al JACC 2005

From the Division of Cardiac Pacing and Arrhythmias, San Raffaele Hospital, Milan, Italy. Drs. Lang and Mesas were Research Fellows at the Hospital University in Milan at the time of data collection. esophageal ecl chronic AF thrombus. Th tained betwee

Lang et al JACC 2005

Manuscript received July 2, 2004; revised manuscript received October 8, 2004, accepted November 22, 2004.

Figure 2. Simultaneous images of catheter positions as seen on fluoroscopy and CARTO. The fluoroscopy helps establish the precise location of the m valve ring in relation to the CARTO map. CARTO has the advantage of being able to see the catheter tip position in multiple views simultaneo However, with fluoroscopy, the valve leaflets are clearly visible, and contact between the catheter and the leaflets can be readily identified. The **electrog inset in the panels in the third column** shows the typical appearance of a mitral annular electrogram recorded from the ablation catheter, whereas the **i just below it** shows the characteristic artifact seen when the catheter is in contact with the mechanical leaflets.

MVP: 1 TIA and 1 pseudoaneurism

1547-5271/\$ -see front matter © 2011 Published by Elsevier Inc. on behalf of Heart Rhythm Society.

doi:10.1016/j.hrtl

or segmental ablation at SVC-right atrial junction in 4 patients). Total procedural time (199.4 \pm 49 minu 166.6 ± 27.5 minutes, P < .001), mean RF time (48) minutes vs 36 ± 8 minutes, P < .01), and fluoroscopy $(60 \pm 17 \text{ minutes vs } 53.8 \pm 6.8 \text{ minutes, } P < .01)$ prolonged in the valve group compared to controls (2). At 3-month follow-up, no significant difference wa between groups I and II with regard to recurrence ra antiarrhythmic medication of AF only (10% [n = 5]) v [n = 9], P = NS), atrial flutter only (18% [n = 9] v [n = 3], P = NS), and combination of AF and atrial (10% [n = 5] vs 6% [n = 3], P = NS). Similar significant difference was seen in the recurrence of arrhythmias between groups I and II at 6 months (22 16%, P = NS) and at 12 months (20% vs 18%, P =Eighty-five percent of patients in group I and 67% tients in group II with recurrences underwent redo abla In the prosthetic valve group, 12 of 18 flutters wer atrial and 6 were typical right atrial cavotricuspid is 1547-5271/\$ -see front matter © 2011 Published by Elsevier Inc

Lakkireddy et al Heart Rhythm 2011

PVAI + LINES (IN PERSISTENT AF)

MULTIPLE PROCEDURE AND ANTIARRHYTHMIC DRUGS NO DIFFERENCE IN COMPLICATIONS MORE ATRIAL TACHYCARDIAS IN VHD

Miyazaki S ET AL JCE 2010

Dr. Callahan receives speaking honoraria from Biotronik and Boston Scientific. Dr. Lindsay is a consultant to Biosense Webster. All other authors have reported that they have no relationships to disclose.

Manuscript received January 1, 2011; revised manuscript received March 2, 2011 accepted March 21, 2011. around the mitral annulus (J from chronic mitral valve di may potentially contribute patients. We aimed to ev

Figure 2 Kaplan-Meier Curves for Arrhythmia-Fee Survival After AF Ablation

Kaplan-Meier curves for arrhythmia-free survival after atrial fibrillation (Aftion in patients with mitral valve replacement (MVR) (**blue lines**) and wit MVR (**red lines**). (**A**) Arrhythmia-free survival after a single ablation. (**B**) Arrh free survival after the last ablation $(1.4 \pm 0.6 \text{ vs}. 1.2 \pm 0.5 \text{ ablations p} \text{ son in patients with and without MVR}$. *Log-rank test p value.

prosthetic valve damage, or entrapment of the ablation of within the prosthesis. The incidence of procedure complications were similar in both groups (Table 4).

Discussion

This is the largest study to date to evaluate the feas safety, and putcomes of AF ablation in patients with We have demonstrated that the procedure is feasible not associated with increased risk of complications, ularly no catheter entrapment occurred. An average ablations per patient was required to restore SR off rhythmic drugs in 70% of patients with MVR refer ablation. Also, ablative therapy allowed arrhythmia with medications that have previously failed in an adc 13% of patients. Only 17% continued to have drug-re AF. In a group of patients who have failed r management, this may still be considered a clinical s However, the overall success rates of radiofrequenc not associated with increased risk of complications, ularly no catheter entrapment occurred. An average ablations per patient was required to restore SR off rhythmic drugs in 70% of patients with MVR refer ablation. Also, ablative therapy allowed arrhythmia with medications that have previously failed in an ad-13% of patients. Only 17% continued to have drug-r AF. In a group of patients who have failed management, this may still be considered a clinical However, the overall success rates of radiofrequence

No differences

Hussein et al JACC 2011

in with a therapeutic international normalized ration cases in which the INR was subtherapeutic at a during the 3 weeks before ablation, a transesophage cardiogram was performed before ablation to exc hrombus.

Two decapolar catheters with 5-mm electro 2-mm interelectrode spacing were placed in the p right atrium and coronary sinus (CS), with the p poles located at the CS ostium. A phased-array di ultrasound catheter (5.5–10 MHz, 8 Fr, AcuNav, Medical, Mountain View, CA) was advanced to the the fossa ovalis in the right atrium. In cases in whi flutter was the presenting rhythm, overdrive atria was initially performed from the proximal and dist determine their location relative to the tachycardi and to exclude right atrial flutter. After excluding rig flutter, heparin was initiated to achieve an activated time of >350 seconds, and this was maintained thr

Mountantonakis et al Heart Rhythm 2011

SURGICAL CRIOABLATION CHRONIC AF IN VALVULAR PATIENTS

Gaita et Al. Circulation 2005. 18;111:136

"7" ablation scheme

Scaglione et al Unpublished data

Scaglione et al. Unpublished data 55 Pts with long-term follow up

	Prosthetic population			Population with valvular disea		
	м	Ao	M + Ao	М	Ao	M + Ao
PAF	0	0	1	7	1	1
Pers AF	10	3	4	14	3	4
Perm AF	0	0	1	5	1	0
Stenosis	-			0	0	1
Regurgitation	2	-		24	4	5
Stenosis + Regurgitation	2	2	2	2	0	0

Results after 2 procedures

VALVULAR: 64% were in SR without AAD follow-up 36 months

Non VALVULAR: 70% were in SR without AAD follow up 36 months

VALVULAR: 56 % were in SR senza AAD PROSTHESES: 88% were in SR without AAD follow up 36 months

... requires higher Xray exposure

...F-up presents higher incidence of AT/flutter

Association of Atrial Fibrillation and Obstructive Sleep Apnea

Apoor S. Gami, Gregg Pressman, Sean M. Caples, Ravi Kanagala, Joseph J. Gard, Diane E. Davison, Joseph F. Malouf, Naser M. Ammash, Paul A. Friedman and Virend K. Somers

Circulation. 2004;110:364-367; originally published online July 12, 2004; doi: 10.1161/01.CIR.0000136587.68725.8E

Prevalence of OSA is significantly higher in patients with AF than in patients without past or current AF

49% [95% CI 41% to 57%] vs 32% [95% CI 27% to 37%], p=0.0004

),†§

Table 3

Obstructive Sleen Annea

Risk of Incident Atrial Fibrillation, Multivariate Models

	HR	95% CI	p Value
<65 yrs old	0203		<530 P
Age (per 10 yrs)	2.04	1.48-2.80	<0.001
Male gender	2.66	1.33-5.30	0.006
Coronary artery disease	2.66	1.46-4.83	0.001
Body mass index (per 1 kg/m ²)	1.07	1.05-1.10	<0.001
Decrease in nocturnal oxygen saturation (per - 1%)*	3.29	1.35-8.04	0.009
=65 yrs old			
Heart failure	7.68	4.32-13.66	<0.001

*For a 0.5-U change in the logarithm of the difference between awake oxygen saturation and mean nocturnal oxygen saturation.

CI - confidence interval; HR - hazard ratio.

Contributory mechanisms for the pathogenesis of AF in the patients with OSA

Maan et al, Crit Pathways in Cardiol 2015; 14:81-85

Safety and Efficacy of Pulmonary Vein Antral Isolation in Patients With Obstructive Sleep Apnea: The Impact of Continuous Positive Airway Pressure Dimpi Patel, Prasant Mohanty, Luigi Di Biase, Mazen Shaheen, William R. Lewis, Kara Quan, Jennifer E. Cummings, Paul Wang, Amin Al-Ahmad, Preeti Venkatraman, Eyad Nashawati, Dhanunjaya Lakkireddy, Robert Schweikert, Rodney Horton, Javier Sanchez, Joseph Gallinghouse, Steven Hao, Salwa Beheiry, Deb S. Cardinal, Jason Zagrodzky, Robert Canby, Shane Bailey, J. David Burkhardt and Andrea Natale

Circ Arrhythm Electrophysiol. 2010;3:445-451; originally published online August 5, 2010; doi: 10.1161/CIRCEP.109.858381

78% vs 73%, p=0.024

Figure 2. Kaplan-Meler curve comparing freedom from AF recurrence among patients with and without OSA.

Figure 3. Kaplan-Meier curve showing probability of AF-free survival among patients with OSA+CPAP and OSA patients without CPAP.

79% vs 68%, p=0.003 Journal of the American College of Cardiology © 2013 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 62, No. 4, 2013 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2013.03.052

Heart Rhythm Disorders

Treatment of Obstructive Sleep Apnea Reduces the Risk of Atrial Fibrillation Recurrence After Catheter Ablation

Adam S. Fein, MD, Alexei Shvilkin, MD, PHD, Dhaval Shah, MD, Charles I. Haffajee, MD, Saumya Das, MD, Kapil Kumar, MD, Daniel B. Kramer, MD, Peter J. Zimetbaum, MD, Alfred E. Buxton, MD, Mark E. Josephson, MD, Elad Anter, MD Boston, Massachusetts

CPAP therapy:

- **↑**AF free survival rate (71.9% vs 36.7%, p=0.01)

AF-free survival off
AAD or redo ablations
(65.6% vs 33.3%,
p=0.02)

AF recurrence rate of CPAP patients was similar to a group of patients without OSA (HR0.7, p=0.46) Long-Term Outcome of Catheter Ablation in Atrial Fibrillation Patients with Coexistent Metabolic Syndrome and Obstructive Sleep Apnea: Impact of Repeat Procedures versus Lifestyle Changes

SANGHAMITRA MOHANTY, M.D., M.S., F.H.R.S., *, † PRASANT MOHANTY, M.B.B.S., M.P.H.,* LUIGI DI BIASE, M.D., PH.D., F.H.R.S., *, †, §, ¶ RONG BAI, M.D., F.H.R.S., *, # CHINTAN TRIVEDI, M.D., M.P.H.,* PASQUALE SANTANGELI, M.D., *, § FRANCESCO SANTORO, M.D., § RICHARD HONGO, M.D., ¶ STEVEN HAO, M.D., ¶ SALWA BEHEIRY, R.N., ¶ DAVID BURKHARDT, M.D.,* JOSEPH G. GALLINGHOUSE, M.D.,* RODNEY HORTON, M.D., * JAVIER E. SANCHEZ, M.D.,* SHANE BAILEY, M.D.,* PATRICK M. HRANITZKY, M.D.,* JASON ZAGRODZKY, M.D.,* and ANDREA NATALE, M.D., F.H.R.S., F.E.S.C., F.A.C.C.*, ‡, ¶,**, ††, ‡‡

Europace (2014) 16, 1309-1314 doi:10.1093/europace/euu066 CLINICAL RESEARCH Ablation for atrial fibrillation

Efficacy of catheter ablation of atrial fibrillation in patients with obstructive sleep apnoea with and without continuous positive airway pressure treatment: a meta-analysis of observational studies

Li Li¹*, Zeng-wu Wang², Jie Li¹, Xing Ge¹, Li-zhu Guo¹, Ying Wang¹, Wei-hua Guo¹, Chen-xi Jiang³, and Chang-sheng Ma^{1,3*}

Table | Study characteristics

Publication year and principal investigator	Study method	AF treatment method	OSA diagnostic method	OSA treatment method	Detection methods of AF recurrence	Loss to follow-up (n)	Interval of follow-up (months)	Quality score
2008 Jongnarangsin et al. ⁸	Retrospective observation	Ablation: PV CFAE	PSG	CPAP	Self-report	0	7	8
2010 Patel et al.*	Retrospective evaluation	Ablation: PV, LA posterior wall or superior vena cava	PSG	CPAP	Documented AF	0	20	9
2010 Matiello et al. ¹	Retrospective observation	Ablation: PV, LA roof and posterior wall	BQ PSG	CPAP	Documented AF	0	12	8
2013 Fein et al. ¹⁸	Retrospective observation	Ablation: PV	PSG	CPAP	Documented AF	0	12	9
2013 Naruse et ol. ¹⁶	Prospective case-control	Abiation: PV, LA posterior wall, or superior vena cava	PSG	CPAP	Documented AF	0	18	9
		or superior vena cava		80.85 V.				

BQ, Berlin questionnaire; CFEA, complex fractionated atrial electrogram; LA, left atrial; PSG, polysomnography; PV, pulmonary vein isolation; AF, atrial fibrillation; OSA, obstructive sleep apnoes.

Study ID	BR (06% CQ	Events, Treatment	Events, Control	% Weigh
OSA vs non-OSA				
Jongnarangsin K. 2008	1.61 (1.16, 2.22)	19/32	108/292	7.70
Patel D. 2010	1.21 (1.03, 1.43)	152/640	462/2360	71.19
Matelo M. 2010	1.53 (1.21, 1.92)	33/42	68/132	11.06
Fein A.S. 2013	1.35 (0.76, 2.41)	28/62	10/30	4.87
Naruse Y. 2013	1.71 (0.89, 3.31)	43/116	8/37	4.38
Subtotal (Feguared = 15.9%, P = 0.313)	1.31 (1.16, 1.46)	275/892	656/2851	100.0
OSA and no CPAP vs non-OSA				
Jongnarangsin K. 2008	- 1.93 (1.34, 2.78)	10/14	108/292	5.98
Patel D. 2010	1.49 (1.24, 1.80)	95/325	462/2360	67.68
Matielle M. 2010	1.38 (1.04, 1.82)	22/31	66/132	15.65
Fein A.S. 2013	1.90 (1.07, 3.38)	19/30	10/30	6.05
Naruse Y. 2013	2.45 (1.23, 4.80)	18/34	6/37	4.64
Subtotal (Feguared = 8.6%, P = 0.358)	1.57 (1.36, 1.81)	164/434	656/2651	100.0
OCA+CPAP vs non-OSA				
Jongnarangsin K. 2008	1.35 (0.83, 2.20)	9/18	108/292	20.08
Patel 0. 2010	0.92 (0.72, 1.19)	67/315	462/2360	23.54
Matiello M, 2010	1.86 (1.52, 2.26)	11/11	66132	24.03
Fein A.S. 2013	0.64 (0.40, 1.79)	9/32	10/30	15.74
Naruse Y. 2013	1.41 (0.70, 2.83)	25/82	8/37	16.61
Subtotal (Feguared = 87.9%, P = 0.000)	1.25 (0.77, 2.03)	111/458	656/2851	100.0
NOTE: Weights are from random-affects analysis (bottom)				
5 1 15 2 2	s			-

Figure 2 Forest plot in the comparison of AF recurrence after catheter ablation in patients with OSA and non-OSA (top), OSA and no CPAP vs non-OSA (middle), OSA + CPAP and non-OSA (bottom).

3) CONCLUSIONS:

AFib ablation success in OSAS is less good than in controls

...CPAP after ablation is able to reduce this success gap

Catheter Ablation of Atrial Fibrillation in Patients With Chronic Lung Disease

Seung-Young Roh, MD; Jong-II Choi, MD, PhD; June Young Lee, PhD; Jae-Jin Kwak, MD; Jae-Seok Park, MD; Ji-Bak Kim, MD; Hong-Euy Lim, MD, PhD; Young-Hoon Kim, MD, PhD

Patients with destructive lung due to Tuberculosis (A and B)

COPD Patients (C and D)

arrhythmogenic focus

Figure 1. Chest radiographs and pulmonary vein computed tomography 3-dimensional reconstruction images of the representative patients in the chronic lung disease group. A and B, images of the patients with a lung destroyed by tuberculosis. C and D, images of patients with chronic obstructive pulmonary disease (COPO). A red dot indicates the site of arrhythmogenic focus-initiated atrial fibriliation in each patient.

Circ Arrhyth Electrophysiol 2011

Figure 4. Kapian-Meler analysis of atrial fibrillation (AF)-free survival in group with chronic lung disease (CLD) and control group. There was no significant difference. Probability value was calculated with a stratified Cox proportional hazard regression model.

AF pts with CLD have significant alterations in PV anatomy related to foci. Higher prevalence of RA foci. RFCA can be performed safely with a comparable success rate to that in patients with normal lungs.

Atrial Arrhythmias in Adults with Congenital Heart Disease: Age Distribution

Bouchardhy et al; Circulation 2009; 120:1679-1686

Interventional Electrophysiology in Patients With Congenital Heart Disease

Relative Risk for Specific Arrhythmias in Common Congenital Heart Defects							
	IART	AF	WPW	VT/5CD	SA Node Dystunction	Spontaneous AV Block	Traumatic AV Block
VSD	+			+			+
ASD	+	+					
TOF	++			++			+
AS		+-		++			+
D-TGA (M&S)	+++			++	+++		
CAVC	+					+	++
SING V (F)	+++	+			+++		
L-TGA	+		++	+		++	+++
Ebstein's anomaly	++		+++	+			

AF indicates atrial fibrillation; WPW, Wolff-Parkinson-White syndrome; SCD, sudden cardiac death; SA, sinoatrial; VSD, ventricular septal defect; ASD, atrial septal defect; TOF, tetralogy of Fallot; AS, aortic stenosis; M&S, after the Mustard or Senning operation; CAVC, common AV canal detect; SING V (F), single ventricle after the Fontan operation; +++, high risk; ++, moderate risk; and +, slight risk.

P. Walsh Circulation 2007

Prevalence of AF and IART in Congenital Heart Disease

✓ Up to a third of patients with CHD and atrial tachycardia who require cardioversion may have AF

 ✓ Patients with significant and unrepaired lesion may be relatively more prone to AF

Kirsh JA et al, Am J Cardiol 20002;90:338-340

Clinical case

R.G. Male, 66 y Diabetes mellitus, smoker, hiatal hernia, previous dysthyroidism.

Congenital heart disease: interatrial septal defect (ostium primum) and pulmonary valve stenosis > surgical repaire in 1986 (39y)

1997 (50y) Atrial flutter→ EP study → typical atrial flutter → *IVC-TA isthmus ablation*

2010 (63y) new episodes of atrial flutter/AF (pharmacological CV with propafenone/amiodarone) → prophylaxis with propafenone 325 mg bid → very frequent AF episodes → indication to ablation

Update on Interventional Electrophysiology in Congenital Heart Disease Evolving Solutions for Complex Hearts

Ablation for AF in CHD

As mentioned, AF is emerging as a more significant problem as patients with CHD attain older ages.12 There is now a small but growing literature describing catheter ablation of AF for this population. Most cases have involved fairly straightforward lesions, such as atrial septal defects,^{45,46} although a few reportsof more complex anatomy also exist. One item that may set these cases apart from more conventional AF ablation in a structurally normal heart is the challenge of achieving left atrial access across patches and septal occlusion devices, but there is now ample evidence that this can be accomplished safely.25.85.86 Catheter ablation for AF will almost certainly become a more common intervention for CHD in the near future.

Sherwin et al; Circ Arrhythm Electrophysiol. 2013

Europace (2014) 56, 1800-1807 doi:10.1093/europace/euu076

Very long-term results of electroanatomic-guided radiofrequency ablation of atrial arrhythmias in patients with surgically corrected atrial septal defect

Males/females	18/28
Patients' mean age (years)	49 ± 13
atients' mean age at surgery (years)	25 ± 13
efect type	
Ostium secundum ASD	41/46
Ostium primum ASD	5/46
nown correction modality	28/46
Autologous/synthetic patch	17/28
Continuous suture	10/28
Combined approach	1/28
econd surgical intervention	6/46
Surgical reintervention on ASD	3/6
Percutaneous closure of ASD	1/6
Botallo duct closure	1/6
Right outflow tract reconstruction	1/6

Scaglione et al EUROPACE 2014

Europace (2014) 54, 1800-1807 doi:10.1093/europace/euu075 Electrophysiology and ablation

Very long-term results of electroanatomic-guided radiofrequency ablation of atrial arrhythmias in patients with surgically corrected atrial septal defect

Arrhythmia's onset after surgery (years) Symptoms Arrhythmia Typical atrial flutter Atypical atrial flutter Atrial tachycardia AF present in 40 % of pts

19 ± 12 40/46 22/46 16/46 8/46

Scaglione et al EUROPACE 2014

Pulmonary Vein Isolation for the Treatment of Drug-Refractory Atrial Fibrillation in Adults with Congenital Heart Disease

Congenital Heart Disease (36pts)

- Atrial septal defect 22 (61%)
- Ventricular septal defect 6 (17%)
- Tetralogy of Fallot
 1 (3%)
- Double outlet left LV and TGA 1 (3%)
- Coartation of aorta 1 (3%)
- Epstain anomaly 3 (8%)
- Bland-Garland White Syndrome 2 (6%)

Noncongenital Structural Heart Disease (355):

Coronary artery disease

Valvular heart disease
 EF <50%

Prior noncongenital cardiac surgery

AF Ablation

Philip F et al; Congenit Heart Dis 2012;7:392-399

Pulmonary Vein Isolation for the Treatment of Drug-Refractory Atrial Fibrillation in Adults with Congenital Heart Disease

Success off ADD

Success on ADD

Two pts with Tetralogy of Fallot and TGA failed ablation attempts "as many of the ablation catheters were not designed to reach the left atrium and PVI"

	CHD	NSHD		
Complications n (%)	n = 36	n = 355	P value	
Mean	6 (17%)	38 (11%)	.42	
Vascular access site	3 (8%)	5 (1%)	<.05	
Embolic event	1 (3%)	0 (0%)	.5	
Pulmonary stenosis	2 (5%)	29 (8%)	.47	
Stroke	0 (0%)	4 (1%)	.5	

Philip F et al; Congenit Heart Dis 2012

Clinical case

R.G. Male, 66 y Diabetes mellitus, smoker, hiatal hernia, previous dysthyroidism.

Congenital heart disease: interatrial septal defect (ostium primum) and pulmonary valve stenosis > surgical repaire in 1986 (39y)

1997 (50y) Atrial flutter → EP study → typical atrial flutter → *right isthmus ablation*

2010 (63y) new episodes of atrial flutter/AF (pharmacological CV with propafenone/amiodarone) → prophylaxis with propafenone 325 mg bid → very frequent AF episodes → indication to ablation

Follow up

4) CONCLUSIONS:

AF is less frequent than IART in GUCH

First we have to eliminate the circuits related to IART

AF ablation is feasible but require experienced centers

AF ablation results are less good and similar to NCSHD

The importance of patient selection

It is convenient to intervene at an early stage

... before it's too late