Has the transvenous ICD lead reached its zenith with new technologies such as S-ICD and leadless pacemaker?

> Michael R Gold, MD, PhD Medical University of South Carolina Charleston, SC

Disclosures: Consultant, Clinical Trials, Speaking Fees- BSC, Medtronic, St Jude,


MY CONFLICTS OF INTEREST ARE

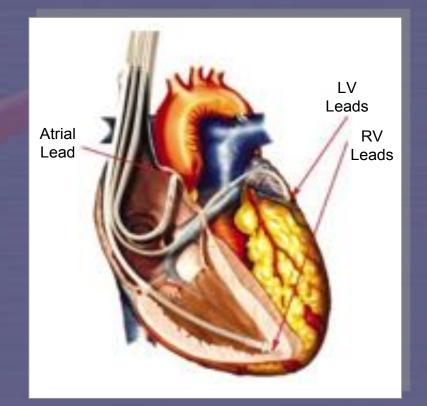
Consultant, Clinical Trials, Speaking Fees-BSC, Medtronic, St Jude

Breakthrough Innovation in Medical Devices

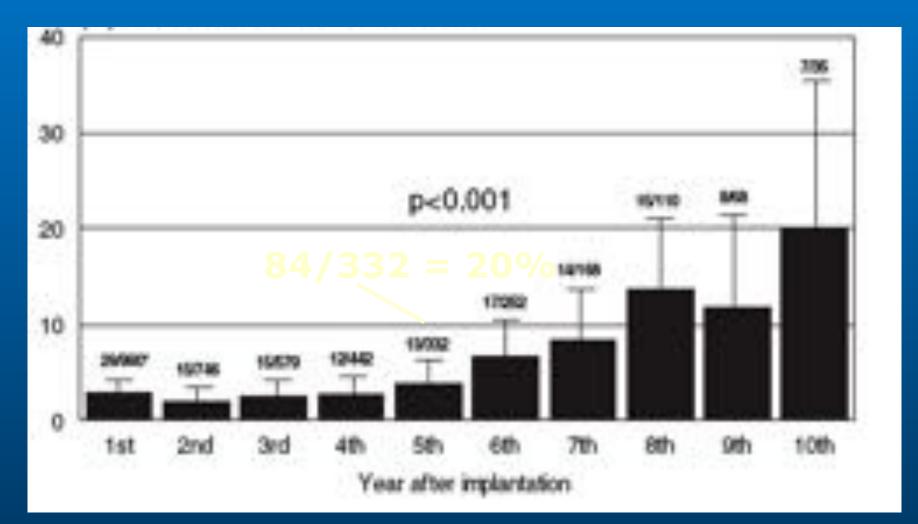
Requires alignment of:

- Unmet clinical needs
- Societal/market readiness
 - Global Megatrends
 - Healthcare trends
- Enabling technology

Breakthrough Innovation Zone


Introduction

- The ICD was first approved in 1985 as a simple shock box using epicardial patches with few if any programmable parameters
- It was shown to treat VT/VF effectively and reduce mortality in high risk cohorts
- Subsequent advances included pacing capabilities, transvenous leads and remote monitoring
- However, complications associated with these devices are one cause of under utilization


ICD Systems

The current ICD approach while effective, is not without significant risks

- 11% ICD patients suffer complications during or shortly after implant
- Acute complications add significant costs to the healthcare system (>\$7000/pt.)
- Infection rates are rising (one of the most serious complications)

Incidence of Lead Failures in Defibrillation Systems

Kleemann et al. Circulation May 2007

S-ICD Lead Structural Differences

No lumen

 Greater Tensile Strength

 Less Torque/Stress
 8cm Parasternal Coil
 Shock vector can + co

■ Shock vector can ↔ coil (reversible)

S-ICD System Study Design Prospective, Single-Arm

Enrollment (N=330)

33 Sites in the US, NZ, NL, UK

1º Efficacy Endpoint: Acute VF Conversion Rate

- 2 consecutive successes out of 4 attempts
- Lower Bound of 2-sided $Cl_{95\%}$ > 88%

- → **Optional Sub-Study:** VF Conversion Rate at ≥150 Days

1º Safety Endpoint: 180-Day System Complication Free Rate

• Lower Bound of 2-sided $CI_{95\%} > 79\%$

Semi-Annual Follow-Up Visits Through Study Close

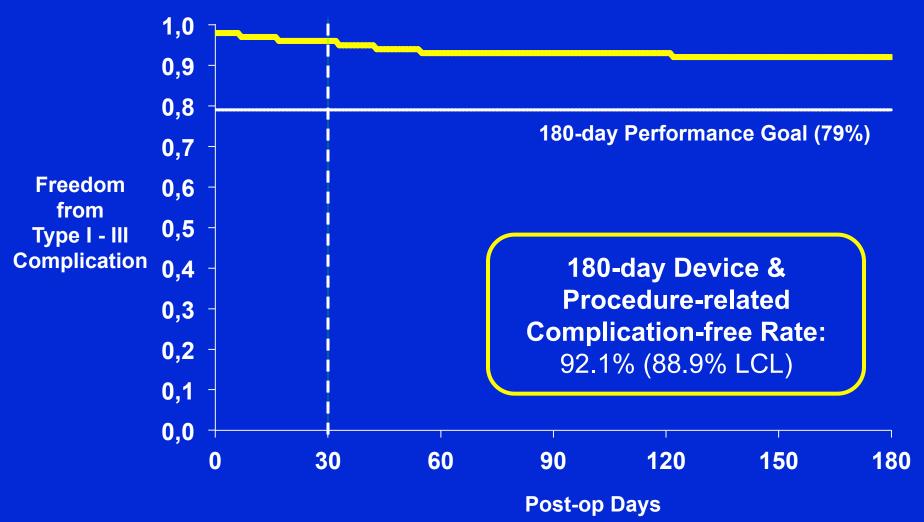
S-ICD System Clinical Investigation

Implant Attempts

321 patients underwent implant procedure

 95% implanted using only anatomical landmarks (no medical imaging)

No electrode or pulse generator movement in 99% of implanted patients throughout followup period


Primary Effectiveness Endpoints

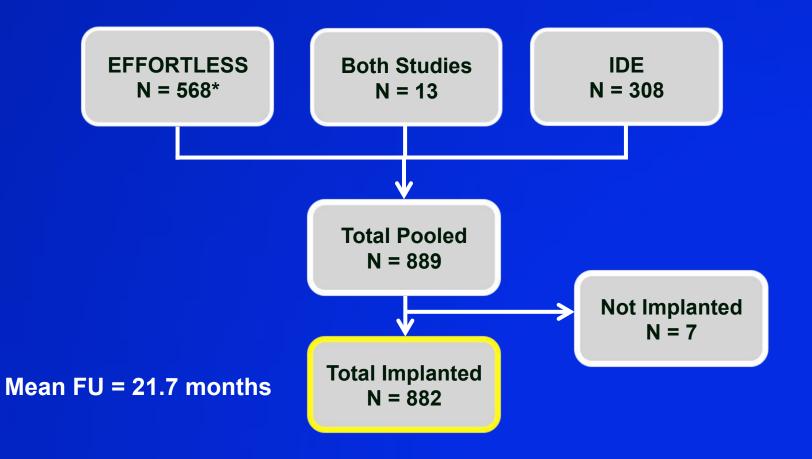
Acute VT/VF Sensitivity VT/VF Inductions: 809

Successful detections: 808 (99.9%)

Conversion with 65 J Shocks (2 consecutive times out of 4 attempts
 100% Successful

Freedom from all Device-, Labeling-, & Procedure-related Complications

Annualized Mortality of ICD Studies

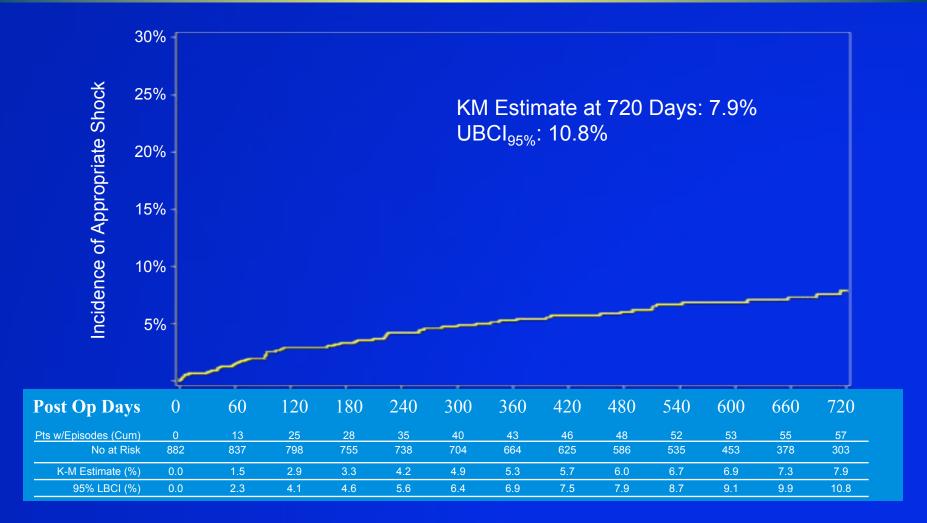

Clinical Study	Annualized Mortality Rate
S-ICD System IDE Study ¹	3.7%
MADIT ²	5.8%
MADIT II ³	6.2%
AVID ⁴	8.2%
SCD-HeFT⁵	5.8%

¹S-ICD System Clinical Investigation. Study not prospectively designed to evaluate mortality,
²Moss, NEJM 1996
³Goldenburg, Circulation 2010
⁴AVID Investigators, N Engl J Med 1997;337:1576-83
⁵Bardy, NEJM 2005

Incidence and Efficacy of Shocks With the S-ICD: Pooled Long Term Results from the IDE and EFFORTLESS Studies

Michael R. Gold, MD*; Petr Neuzil, MD, PhD, Marcoen Scholten, MD, Pier Lambiase, PhD, FRCP, Margaret Hood, MD, Mayar Rashtian, MD, Bradley Knight, MD, FHRS and Dominic Theuns, PhD Medical University of South Carolina, Charleston, SC, USA; Na Homolce Hospital, Prague, Czech Republic; Medisch Spectrum Twente, Rotterdam, Netherlands; Heart Hospital, London, United Kingdom; Auckland City Hospital, Cardiology Dept, Auckland, New Zealand; Foothill Cardiology, Pasadena, CA; Northwestern Memorial Hospital, Chicago, IL; Erasmus MC, Rotterdam, Netherlands

Pooled Analysis Cohort


* Includes 314 enrolled prospectively and 254 enrolled retrospectively

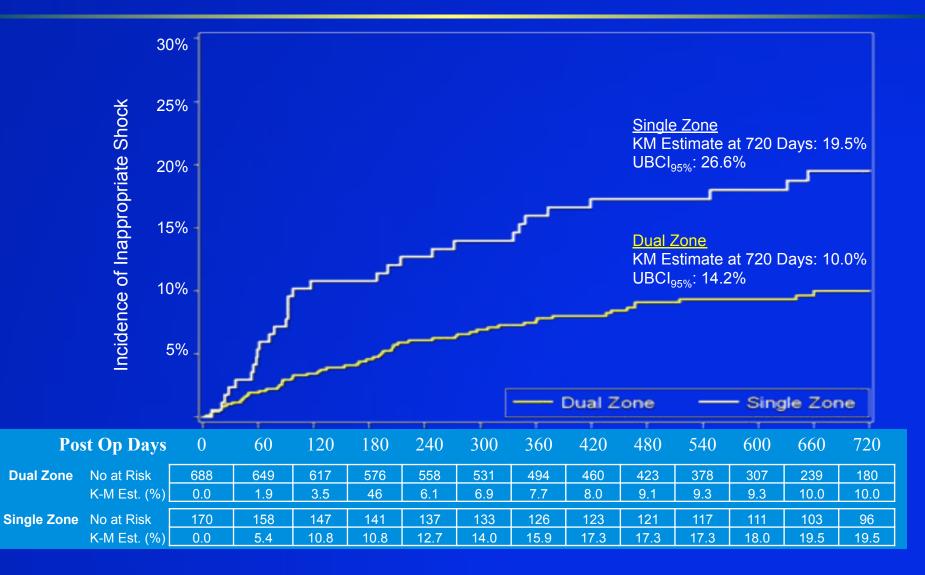
Induced VT/VF Conversion

	Patients (N = 771)*	
Category	n	%
Successful Conversion $\leq 65 J$	728	94.4
Successful Conversion ≤ 80 J	760	98.6

* Includes all available conversion tests.

Incidence of Appropriate Shocks at 2 years

Conversion of Spontaneous VT/VF


DISCRETE EPISODES

Rhythm	Episodes N (Pts)	1 st Shock Conversion (%)	≥ 1 Shock Conversion (%)
MVT	60 (40)	55 (91.7)	60 (100.0)
PVT/VF	51 (32)	45 (88.2)	49 (96.1)
All	111 (59)	100 (90.1)	109* (98.2)

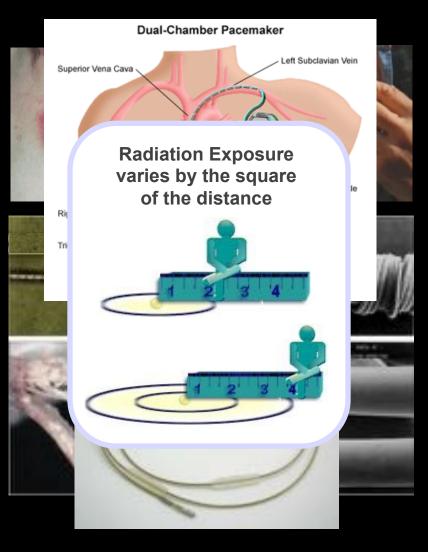
*Of two unconverted episodes, one terminated after the 5th shock but beyond the time frame of EGM recording. In the other episode, the device prematurely declared the episode ended after 2 shocks due to undersensing. A new episode was immediately reinitiated and the VF was successfully terminated with one additional shock.

		Device -	VT/VF STORMS
Patients	Storms	Episodes	Final Storm Conversion (%)
			S-ICD Shock: 10 (83.3%)
7	12	88	External Shock: 1 (8.3%)
		No Conversion: 1 (8.3%)	

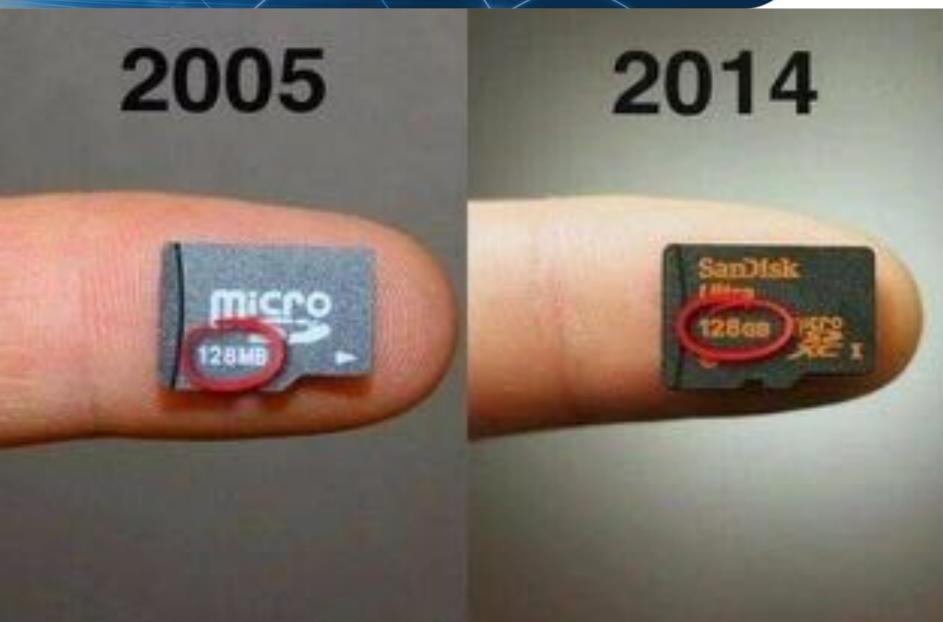
Incidence of Inappropriate Shocks at 2 years

S-ICD Lead

 1 reported lead failure in US trials when lead inadvertently cut with scapel during implant
 Longest series from Netherlands showed no failures at mean follow-up of 4.5 years


Pacemaker State-of-the-Art

• Procedure:

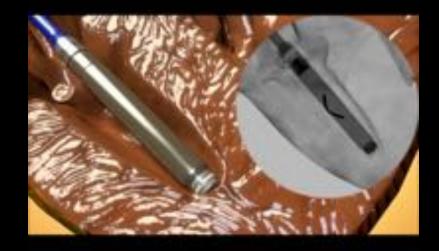

- Radiation exposure
- Surgical pocket + Transvenous leads
- Device issues Pocket:
 - Discomfort
 - Hematomas
 - Infections
 - Cosmetic concerns

• Leads

- Mechanical failures
- Infections; Extractions
- Mobility restrictions
- Challenge in compatibility with MRI

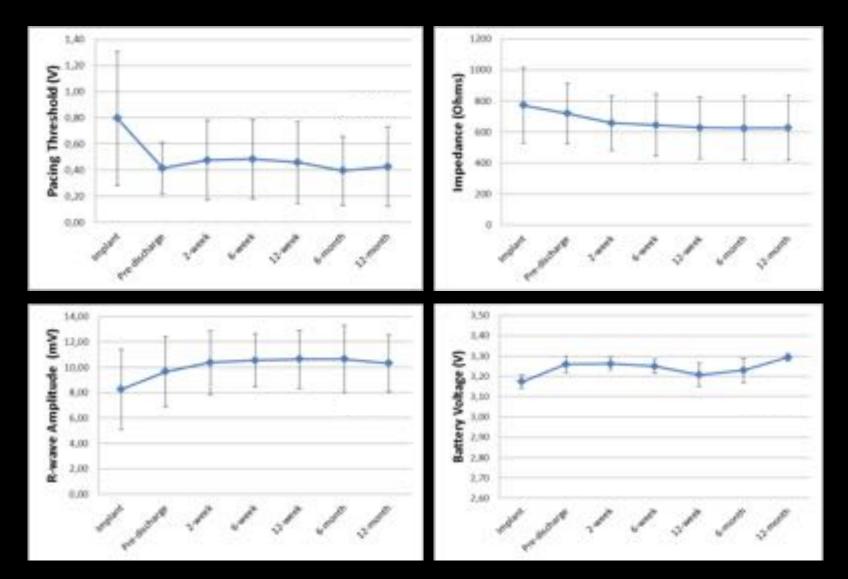
Pace of Innovation

Incidence of Lead & Pocket Complications


- Over 700,000 people are implanted annually worldwide
 - Nearly 50,000 experience post-implant related problems
- Over 4.4 million people WW currently have pacemaker
 - ➢ 65,000 chronic lead related problems annually

Pacing complication	Average of Incremental cost per intervention in 2009
Infection	\$ 49,652
	· ,
Lead revision	\$ 16,285
Pneumothorax	\$ 16,411
Pocket revision	\$ 12,560

- 2; MDT, STJ, BSX Product Performance Reports
- 3: Danish Pacemaker Registry, www.pacemaker.dk


Pacemaker Minutarization

- Percutaneous femoral vein delivery
 - 18F introducer /steerable catheter
- Self-contained device in right ventricle
 - No lead or surgical pocket
 - VVIR w/ Hysteresis
 - Inherently MRI compatible
- Replacement options
 - Catheter-based retrieval
 - Deliver additional leadless pacemakers
 - Revert to conventional pacing lead

LCP Long-Term Outcome: Summary of Pacing/Sensing Parameters

LEADLESS Study Safety Events

• Early Safety Events:

- 1 <u>inadvertent placement</u> in LV (across PFO) → promptly removed and device placed in RV
- 1 <u>Tamponade</u> \rightarrow Surgery \rightarrow f/u: Fatal stroke
- 1 Minor <u>Groin Hematoma</u> \rightarrow no treatment
- 1 w/ <u>VT</u> 2 days after implant → LCP removed and ICD placed → ICD shock 2 wks later (same CL)
- Safety Events in follow-up:
 - No device migration / dislodgements
 - No infection
 - No mechanical failures / early battery depletion
 - No pro-arrhythmia

Current Status of Leadless Pacemaker

- Pacemaker System:
 - Leadless right ventricular cardiac pacing is feasible
 - Can eliminate the weak link in pacemaker systems: <u>the lead</u>
- Proof of Principle for acute / sub-acute LCP retrieval
- Potential Limitations:
 - Single-chamber (RV) pacing only
 - Potential risk for device embolization (not seen in *LEADLESS*)
 - \blacktriangleright Large venous sheath (18- 24F):
 - Now increasingly common used for EP procedures
 - ➢ How to manage device after battery depletion?
 - Retrieval *vs* Abandonment

SUMMARY

- Intravascular leads remain the "weak link" of both pacing and ICD systems
 - The S-ICD is approved therapy and effective in patients without pacing requirements. It has been used most commonly in young patients with low risk of monomorphic VT or bradycardia
- Leadless pacing is a new therapy for RV only pacing that will likely be used primarily in AF patients or those with limited access
- Ultimately, multi-chamber leadless pacemakers or pellets will be combined with subcutaneous ICDs to allow for leadless CRT or other systems