

IMPROVED PROCEDURAL EFFICACY OF PULMONARY VEIN ISOLATION USING THE NOVEL SECOND-GENERATION

Massimiliano Maines

Domenico Catnzariti, Carlo Angheben, Maurizio Del Greco

Venice, October 18 2015

Background - atrial fibrillation ablation

2012 HRS/EHRA/ECAS Consensus Statement on catheter ablation of AF "Ablation strategies which target the PVs and/or PV antrum are the cornerstone for most AF ablation procedures."

Cappato et al., Circ Arrhythm Electrophysiol 2010;3;32-38 Calkins et al. HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation. Heart Rhythm 2012

Background - atrial fibrillation ablation

CRYO 'One Shot' technology • Ability to isolate the PV generally with 1-2 applications Homogeneous lesion Does not require 3D mapping No operator-dependance – faster learning curve

First-generation cryoballoon (CB1) repeated freezing is often necessary

Background - atrial fibrillation ablation

Arctic Front Advance

Investigate the impact of the novel CB2 on procedural efficacy of cryoballoon PV isolation (CB-PVI)

METHODS:

"Single-catheter procedure"

Big balloon (28 mm) V3 V5 ACH 1-2 ACH 2-3 ACH 3-4 **Endoluminal** ACH 4-5 mapping catheter ACH 5-6 ACH 6-7 ACHI 7-8 CS 9 10 CS 71 CS 5 6 Delay Isolation Increased

Division of Cardiology, S. Maria del Carmine Hospital – Rovereto - Italy

Delay

ICE in our electrophysiology laboratory

All Cryoablation

Guide in atrial transseptal puncture 1.

- 2. Identification and prevention of procedural complications

3. Achieve Cryoballoon PV Occlusion

lo tría R

CONTEMPORARY REVIEW

Best practice guide for cryoballoon ablation in atrial fibrillation: The compilation experience of more than 3000 procedures **O**

Wilber Su, MD, FHRS, Robert Kowal, MD, FHRS, Marcin Kowalski, MD, FHRS, Andreas Metzner, MD, FHRS, J. Thomas Svinarich, MD, FHRS, Kevin Wheelan, MD, FHRS, Paul Wang, MD, FHRS

Usefulness of Contrast Intracardiac Echocardiography in Performing Pulmonary Vein Balloon Occlusion during Cryoablation for Atrial Fibrillation

Domenico Catanzariti, MD¹, Massimiliano Maines, MD¹, Carlo Angheben, MD¹, Maurizio Centonze, MD², Claudio Cemin, MD¹, Giuseppe Vergara, MD¹

¹Division of Cardiology, S Maria del Carmine Hospital, Rovereto (TN), Italy; ²Department of Radiology, S Chiara Hospital, Trento, Italy

	All (n=30)	Group 1 (n=15)	Group 2 (n=15)	Р
Procedure time (minutes)	138±20	152±19	127±16	P<0.05
Number of applications	11.4±3.2	10.8±2.6	12.0±3.6	P=n.s.
fluoroscopy time (minutes)	34±8	43±9	30±12	P<0.05
use of contrast (ml)	140±62	190±47	88±26	P<0.001

METHODS: Population

PAROXYSMAL OR SHORT- TERM PERSISTENT ATRIAL FIBRILLATION (son 2011 – fab 2014)	Age (years)	ALL 46 pts 65±13	CB1 23 pts 66±9	CB2 23 pts 65±6
Cryo-Balloon	Male Gender	37 (80%)	19	18
ablation SVC	Diabetes mellitus	3 (7%)	1	2
	Hypertension	24 (52%)	11	13
	CAD	5 (11%)	3	2
	HF	2 (4%)	1	1
	IR¢	4 (9%)	2	2
	врсо	3 (7%)	1	2
	Ictus/TIA	3 (7%)	1	2
	Obesity	15 (33%)	6	9
	EF (%)	60.2±3.9	59.9±2	60.7±3

METHODS: Population

	Arctic Front	Arctic Front Advance	
	CB1 (300 s application time)	CB2 (240 s application time)	Ρ
Patients (number)	23	23	-
single-shot PVI rate (%)	56	85	< 0.01
procedure duration (min)	190 ± 26	139 ± 32	< 0.01
fluoroscopy exposure time (min)	35.7 ± 8.3	23.4 ± 5.4	P=0.01
Time to PVI (seconds)	68 ± 28	49 ± 26	

The improved efficacy of the CB-2G may be explained by an increased area of balloon-tissue contact with optimal cooling. Furthermore, improved cooling of the nose may give rise to more extensive ice formation within the PV as demonstrated by the stable ice cap phenomenon.

The improved efficacy of the CB-2G may be explained by an increased area of balloontissue contact with optimal cooling. Furthermore, improved cooling of the nose may give rise to more extensive ice formation within the PV as demonstrated by the stable ice cap phenomenon.

RESULTS: complications

Only 1 transient paralysis (few hours) of phrenic nerve in CB1group

RESULTS: complications

Only 1 transient paralysis (few hours) of phrenic nerve in CB1group

Acute procedural success was 100% in both groups

RESULTS: follow-up

Improved Procedural Efficacy of Pulmonary Vein Isolation Using the Novel Second-Generation Cryoballoon

ALEXANDER FÜRNKRANZ, M.D.,* STEFANO BORDIGNON, M.D.,* BORIS SCHMIDT, M.D., MELANIE GUNAWARDENE,* BRITTA SCHULTE-HAHN, M.D.,* VERENA URBAN, M.D.,* FRANK BODE, M.D.,† BERND NOWAK, M.D.,* and JULIAN K. R. CHUN, M.D.*

TABLE 2 Procedural Parameters			
	CB-1G	CB-2G	P Value d
Balloon applications per vein (excluding bonus)	1.8 ± 1.2	$1,3 \pm 0,8$	< 0.001
Distance to achieve proximal electrode (mm)	18±8	12 ± 5	<0.001 ed
Tpy1 (seconds)	79 ± 60	52 ± 36	0.049
Procedure duration (minutes)	128 ± 27	98 ± 30	<0.001 sc
Fluoroscopy exposure (minutes)	19.5 ± 7.4	13,4 ± 5,3	0.001 ed
Contrast medium (mL)	134 ± 33	120 ± 34	n.s. :h.

Improved Procedural Efficacy of Pulmonary Vein Isolation Using the Novel Second-Generation Cryoballoon

ALEXANDER FÜRNKRANZ, M.D.,* STEFANO BORDIGNON, M.D.,* BORIS SCHMIDT, M.D., MELANIE GUNAWARDENE,* BRITTA SCHULTE-HAHN, M.D.,* VERENA URBAN, M.D.,* FRANK BODE, M.D.,† BERND NOWAK, M.D.,* and JULIAN K. R. CHUN, M.D.*

From the *Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Markus Krankenhaus, Frankfurt am Maim; and †Universitätsklinikum Medizinische Klinik II, Lübeck, Germany

Effective CB-2G PVI could be performed with increased real-time PVI visualization rate (49% vs 76% P < 0.001

ARTIC FRONT ADVANCE ARTIC FRONT

Comparison of the First and Second Cryoballoon

High-Volume Single-Center Safety and Efficacy Analysis

and the second second second

	CBG1 (n=364 Patients)	CB62 (n=120 Patients)	PValue
Total procedure time, min	185±49	175x45	0.038
LA time, min	139±40	124±39	<0.001
Ruproscopy time, min	34±12	29±11	<0.001
Acute PVI with CB only	1469/1471 (99.88)	476/476 (100)	0.43
Focal touch-ups per vein	2/1471 (0.14)	0/476 (0)	1.0
Mean number of applications per patient	12.1±3.3	11.6±2.5	0.06
Mean number of applications per vein	2.98±1.2	2.82±1.1	0.007
Mean number of applications until PVI	1.45±0.81	1.28±0.64	0.001
Feasibility real-time PV potential recording	456/1471 (31)	208/478 (44)	0.0001
Early reconduction	36/1471 (2.6)	2/476 (0.42)	0.0023
CB use			
23-mm C8 only	118/364 (32)	41/120 (34)	0.74
28-mm CB only	32/364 (9)	54/120 (45)	0.0001
23+28-mm C8	208/364 (58)	25/120 (21)	0.0001
Freeze abortion because of low BT	6/364 (1.65)	4/120 (3.33)	0.27

377

	Arc-C8 (n = 197)	Arc-Adv-CB (n = 109)	P value
Anatomical features			112012
Number of pulmonary voins, median (range)	4.0 (3-6)	40(3-7)	NS.
Pulmorary veinabnormality, n (%)	17 (15.60)	29 (1470)	NS
Left common PV, n (50)	70 (35.50)	37 (34.00)	NS
Right common PV, # (%)	7 (3.50)	4 (3.67)	NS
Procedural details			
Acute procedural success n (%)	766/770 (99.50)	433/435 (99:50)	NS
Cumulative time of procedure (minutes)	75.61 ± 12.64	66.67 ± 9.52	< 0.001*
Pluoroscopy time (minutes)	16.22 ± 1.62	12.96 ± 2.69	<0.001*
Median temperature reached during cryoballoon applications ("C			
RSPV	46 (44-49)	48 (47-49)	NS:
R/PV	42 (39-45)	++ (+2-+5)	
L9Y	51 (45-56)	52 (46-55)	
UPV	46 (42-51)	48 (45-52)	
Cumulative time of cryoballoon applications (s)			
RSPV	645.00 ± 101.00	519.58 ± 89.87	< 0.001*
RIPV	512.14 ± 133.29	462.64 ± 158.44	0.010*
LSPV	659.77 ± 120.02	536.40 ± 87.88	< 0.001*
UPV	637.29 ± 164.06	545.00 ± 93.28	< 0.001*
Crystalloon application/PV, median (range)	2 (2-5)	2 (2-4)	N5
Vagal reactions n (%)	75 (38.07)	55 (50.45)	0.036*
Procedure-related complications # (%)		100000	
Tamponade requiring percutaneous drainage	1 (0.50)	0(0)	NS
Femoral AV fistula requiring surgical/interventional repair	2 (1.00)	1(0.90)	NS.
Phronic nerve paley	5 (2.54)	9(826)	0.040*
Haematoma/pseudoaneurysm	4 (2.00)	2(1.80)	NS
Post-procedural pericardial effusionin (%)	14(7.1)	8(73)	NS
follow-up parameters	and the second	- S. R	
Follow-up time (months)	30 (23-38)	10 (8-13)	< 0.001*
Early recurrence # (%)	36 (18.27)	12 (11.01)	NS

High rate of durable pulmonary vein isolation after second-generation cryoballoon ablation: analysis of repeat procedures

Second-generation cryoballoon atrial fibrillation ablation is associated with a high rate of durable PVI in patients with ATa recurrence. The RSPV represents the PV with the greatest risk for left atrium – pulmonary vein reconnection.

Europace (2015) 17, 725–731 doi:10.1093/europace/euu331

High rate of durable pulmonary vein isolation after second-generation cryoballoon ablation: analysis of repeat procedures

Stefano Bordignon, Alexander Fürnkranz, Laura Perrotta, Daniela Dugo, Athanasios Konstantinou, Bernd Nowak, Britta Schulte-Hahn, Boris Schmidt, and Kyoung Ryul Julian Chun*

Second-generation cryoballoon atrial fibrillation ablation is associated with a high rate of durable PVI in patients with ATa recurrence. The RSPV represents the PV with the greatest risk for left atrium-pulmonary vein reconnection.

Acute procedural and cryoballoon characteristics from cryoablation of atrial fibrillation using the firstand second-generation cryoballoon: a retrospective comparative study with follow-up outcomes

Arash Aryana • Shemsa Morkoch • Sean Bailey • Hae W. Lim • Rahmani Sara • André d'Avila • P. Gearoid O'Neill

J Interv Card Electrophysiol DOI 10.1007/s10840-014-9942-7 Received: 5 April 2014 / Accepted: 29 July 2014

C Springer Science+Business Media New York 2014

CONCLUSION

THE CB2 SIGNIFICANTLY IMPROVED PROCEDURAL EFFICACY COMPARED TO THE CB1

high rates of single-shot isolation
shortened procedure duration and fluoroscopy exposure time.

- PV mapping during cryoablation was possible in the majority of PVs using the CB2 and this may provide the opportunity to adjust application time and number individually

- safety profile is similar.

