
Implantable device infection

Josef Kautzner

Institute for Clinical and Experimental Medicine, Prague, Czech Republic

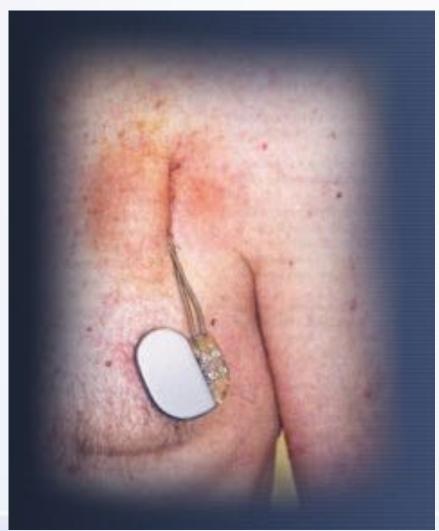
joka@medicon.cz www.ikem.cz

- Advisory Board member
 - Bayer, Biosense-Webster, Boehringer-Ingelheim, Boston Scientific, Medtronic, Siemens Healthcare, St Jude Medical
- Steering Committee member
 - Biotronik, Medtronic, Boston Scientific, Daiichi Sankyo
- Clinical studies PI
 - Biosense-Webster, Biotronik, Boston Scientific, Daiichi Sankyo, Medtronic, St Jude Medical
- Speaker bureau
 - Biosense-Webster, Biotronik, Boston Scientific, Medtronic, Siemens Healthcare, St Jude Medical

- Classification
- Epidemiology
- Risk factors
- Diagnostics
- Microbiology
- Management
- Prognosis
- Prevention

Cardiac Device Infections

- Pocket infection:
 - Localized changes at site with swelling, erythema, pain, warmth, fluctuance, drainage, erosion, dehiscence of overlying skin
 - Blood cx are positive ~50%
- PPM or ICD related Endocarditis:
 - Oscillating intra-cardiac mass on the electrode leads, valves or endocardial surface by echo
- Occult bacteremia /fungemia with no local signs at pocket site



ICD Pocket Infection

Infection/Erosion

CDI: Detailed Classification

- Mode of infection
 - Primary (device or pocket are the sources of infection – usually due to contamination at the implant)
 - Secondary (lead implanted due to bacteremia from different source)
- Time of onset
 - Early infection (within one month from index procedure)
 - Late infection

Epidemiology

Incidence of CIED Infection

- Analysis of 22 studies (at least 1000 pts each)
- Overall incidence of CIED infections: 0.5-2.2 %
- Infections more frequent in ICD pts vs PM pts (8.9 vs 1 per 1000 pt years)
- Less frequent in primary implants (0.5-0.8 % vs 1-4 %)

Sandoe JAT, et al. J Antimicrob Chemother 2015; 70: 325–359

2010-2011: 5918 consecutive patients, 562-9.5 % - major complication)

Table 2 Cumulative incidence of complications at six months*

	Ail (n = 5918)	New implant (n = 4355)	Generator replacement (n = 1136)	Upgrade/ lead revision (n = 427)
Any complication	562 (9.5: 8.7-10.2)	432 (9.9.9.0-10.8)	67 (5.9: 45-7.3)	63 (14)8: 11.4-18.1)
Any major complication	329 (5.6; 5.0-6.1)	253 (5.8: 5.1-4.5)	40 (2.5; 2.4-4.6)	36(84;58-111)
Any minor complication	250 (42: 3.7-4.7)	189 (4.3; 3.7-4.9)	30 (2.6: 1.7 - 3.6)	31 (7.3; 4.8-9.7)
Major complications	and the second	2000 and 100 -	and the second second	
Lead related re-intervention	143 (2.4: 2.0-2.8)	120 (2.8: 2.3-3.2)	10 (0.9: 0.3-1.4)	13 (3.0; 1.4-4.7)
Infection	移投度0.6-1.1)	24 (0.6:03-0.8)	17 (15:08-2.2)	8(19,06-32)
Local infection	22 (0.4, 0.2-0.5)	10(0.2:0.1-0.4)	8 (0.7; 0.2-1.1)	4 [1.0:0.0-1.9]
Systemic infection/endocarditis	27 (0.5; 0.3-0.6)	14 (0.2; 0.2-0.5)	9 (0.8:03-13)	4 (0.9; 0.0-1.9)
Lineau construction and constraints	2100000-00	10 (10,00-10)		alexan-est
Cardia: perforation	38 (24: 0.4-0.8)	35 (0.8.0.5-1.1)	0	3 (0.7; 0.0-1.5)
No inservention	21 (0.4: 0.2-0.5)	18 (0.4:0.2-0.6)	0	3 (07; 0.0-1.5)
Intervention*	17 (0.3, 0.2-0.4)	17(04:03-04)	0	0
Pocket revision because of pain	25 (0.4: 0.3-0.6)	10(0.2:0.1-0.4)	9 (0.8:0.3-1.3)	\$ (1.4; 0.3-2.5)
Generator-lead interface problem with re-intervention	7 (0.1: 0.0-0.2)	3 (0.1:0.0-0.1)	4 (0.4:00-0.7)	0
Haematoma requiring re-intervention	10-02-0.1-0.3)	9 (0.2: 0.1-0.3)	1 (0.5-00-0.3)	0
Other ⁴	16 (0.3; 0.1-0.4)	16 (0.4:0.2-0.5)	0	0
Minor complications				
Haematoria*	138 (2.3; 1.9-2.7)	104 (2.4; 1.9-2.8)	20 (1.8:1.0-2.5)	14(3.3; 1.6-5.0)
Wound infection treated with antibiotics	69 (12:09-14)	47(1.1;0.8-1.4)	12 (10:05-1.7)	10(23:09-3.8)
Preumothorax conservatively treated	39 (0.7, 0.5-0.9)	32 (0.7:0.5-1.0)	0	7 (1.6; 0.4-2.8)
Lead datadgement without re-intervention	10 (0.2: 0.1-0.7)	9 (0.2: 0.1-0.3)	0	1 (0.2:00-0.7)

"Reported as absolute Preparates and percentages with RIN Claim parenthesis.

"Lead revision, pericardiocentesia, or both,

These venous dyramitices (n = 0). Twiddler's syndrome (n = 1), would revision (n = 1), stroke (n = 1), myocardial infunction (n = 1).

Resulting in prolonged hospital stax. Hospital re-subvestors, or additional out-patient visit.

Kirkfeldt RE, et al. Eur Heart J (2014) 35, 1186–1194

Complications of implantable devices IKEM Prague

	2014	2013	2012	2011
Late dislocations	6 (0.7%)	12 (1.4%)	9 (1.1 %)	2 (0.2 %)
Wound infection without explantation	4 (0.4%)	14 (1.7 %)	8 (1 %)	n.a.
Infection with explantation	11 (1.2%)	7 (0.8 %)	7 (0.9%)	n.a.
Fatal endocarditis	2 (0.2%)	0	1 (0.1%)	1 (0.1%)
Life-threatening endocarditis	0	2 (0.2 %)	1 (0.1 %)	2 (0.2 %)
Endocarditis well treated by ATB	3 (0.2%)	0	3 (0.5%)	2 (0.2%)
System failure or dysfunction of components	0	0	4 (0,5%)	n.a.
Others	5 (untightened screw, change of ports, etc).	0	Vena cava superior syndrome	

Complications (%)	Danish pacemaker and ICD register (n=5918)	IKEM (n=910)
Any complication	9.5	9.1
Lead related re-intervention	2.4	2.6
Wound infection treated with antibiotics	1.2	0.4
Local infection	0.4	1.2
Systemic infection/endocarditis	0.5	0.4
Pneumothorax requiring drainage	0.9	0.5
Cardiac perforation	0.6	0.7
Haematoma requiring re-intervention	0.2	0.4

Rising Rates of Device Infections

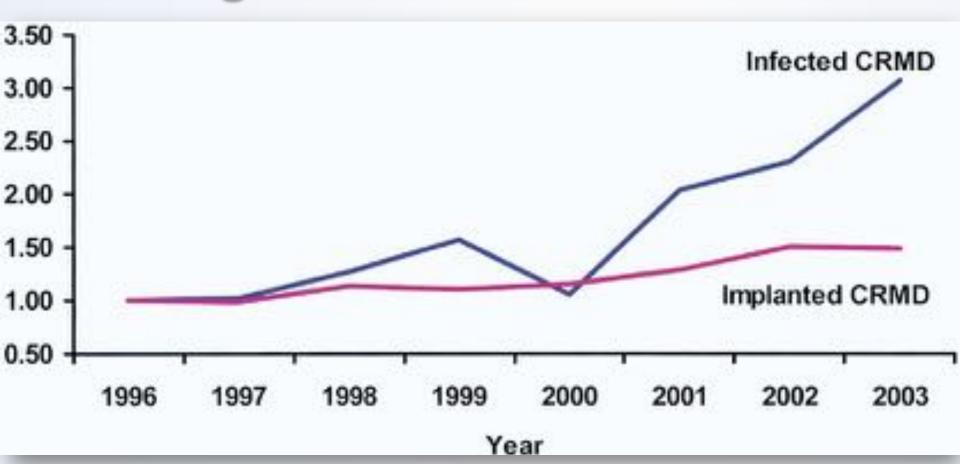
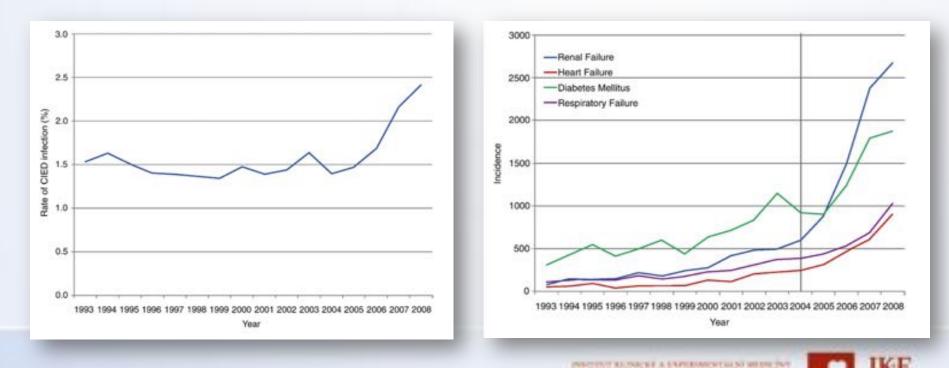


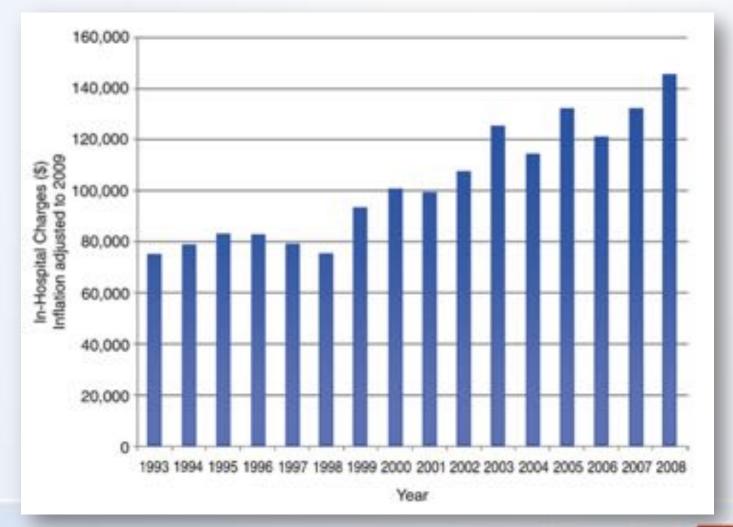
Figure 1. Proportional increase in cardiac devices implanted and those infected by year of hospitalization, normalized to the number of devices implanted and infected in 1996, respectively. Note the dramatic increase in device infections compared with device implantations, after 2000.


REPARTED A DEPENDENT OF NUMBER OF

KLINIKA KARDIOLOGIE

Voight, A et al. JACC 2003. 48:3 590-591

Increased CIED infection rate reflects more comorbidities


- Nationwide Inpatient Sample (1993-2008)
- Over 4.2 M pacemaker (3.2 M) and ICD (1.1 M) implants
- Incidence CIED infection:1.61 %

KLINIKA KARDIOLOGIE

Greenspon AJ, et al. JACC 2011;58:1001-6c

Increased CIED Infection Rate Increases Costs

Greenspon AJ, et al. JACC 2011;58:1001-6c

Risk Factors

Risk Factors for CIED Infection

Case-control study – 29 pts, 58 controls (1991-2003) 83% pocket infection, 10 % endocarditis

Clinical variable	OR (95% CI)	P
Corticosteroid use*	13.90 (1.27-151.7)	.03
Received antibiotic pro- phylaxis prior to implantation procedure	0.087 (0.016-0.48)	.005
No. of leads in place ^b		
>2 leads vs. 1 lead	5.64 (0.76-42.15)	.09
>2 leads vs. 2 leads	5.41 (1.44-20.29)	.01

* Defined as receipt of >20 mg of prednisone, or equivalent, for >1 month during preceding year.

Overall P value for this comparison was .04.

Sohail MR, et al. Clin Infect Dis 2007;45:166–73

Risk Factors for Device Infection

- Patient Factors (Odds Ratios where listed)
 - Immunosuppression
 - Renal dysfunction
 - Corticosteroid use
 - Oral anticoagulant use
 - Coexisting illnesses such as diabetes mellitus
 - Amount of indwelling hardware
- Procedural characteristics
 - Not administering antimicrobial prophylaxis
 - Device revision/replacement (2% vs <1% risk)
 - Physician experience / surgical technique
 - Microbiology if bloodstream infection i.e. Staph aureus

Sohail *CID* 2007 45:166. Klug, *Circulation*;2007116:1349 Bloom *Pac Clin EP* 2006 29;142

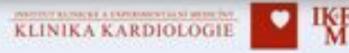
Risk Factors for IE (IKEM)

Wound healing problem, re-implant within 6 months	17 (25%)
Adjacent to another surgical procedure	7 (10%)
Infection focus elsewhere	9 (13%)
Immunosupressive drugs	5 (7%)
Hemodialysis	3 (4%)
Unknown	28 (41%)

Diagnostics

Intracardiac Echo Is More Sensitive.... 162 pts - lead e

162 pts – lead extraction 152 IE, 10 lead malf

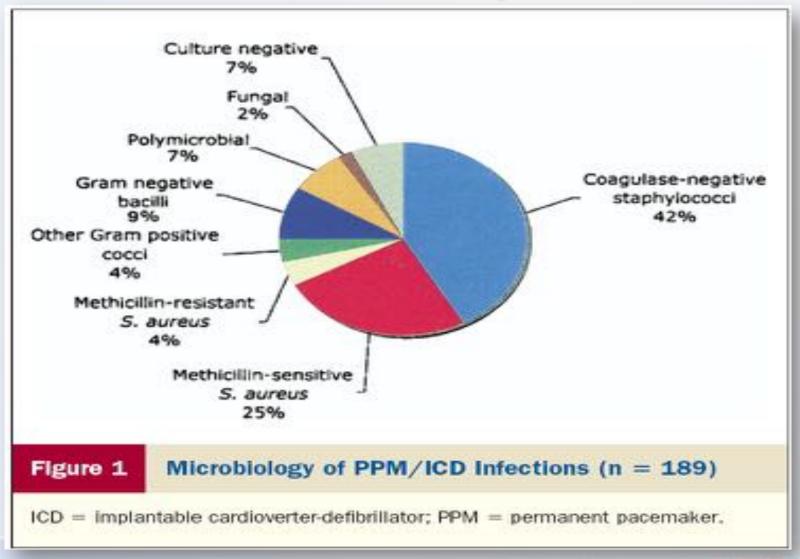

Echocardiographic Data Related to the Duke and Sohall Criteria

	TEE		ICE		
Criteria	Negative	Positive	Negative	Positive	
Duke definite	12(27)	32 (73)	0	44 (100)	
Duke possible	46 (88)	6 (12)	38 (73)	14 (27)	
Duke rejected	54 (96)	2 (4)	53 (95)	3 (5)	
Duke definite and Sohall	20 (35)	38 (65)	0	58 (100)	

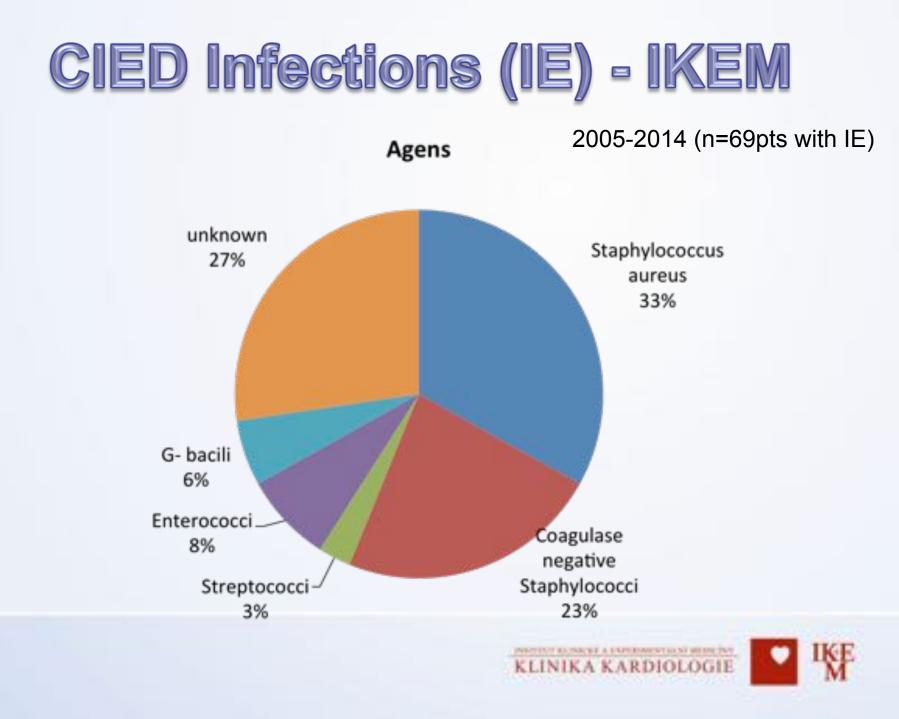
Values are n (%).

TEE - transesophageal echocardiography; ICE - Intracardiac echocardiography.

Narducci ML, et al. J Am Coll Cardiol 2013;61:1398-405



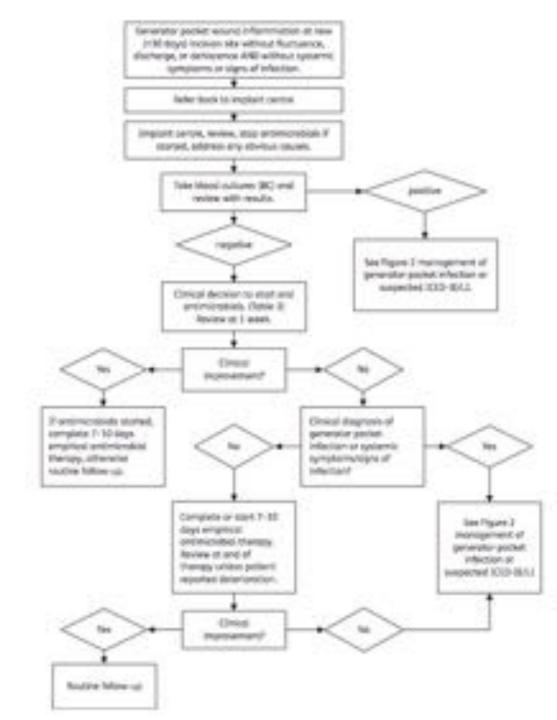
Microbiology


Pacer / ICD Infections (138 PPM, 51 ICDs)

Sohail et al. JACC2007;49:1851-1859

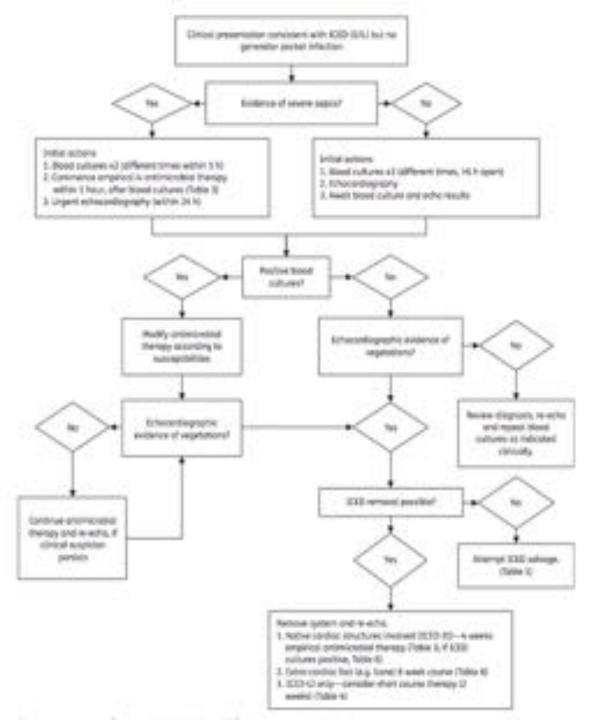
KLINIKA KARDIOLOGIE

Management


Management of CIED Infection

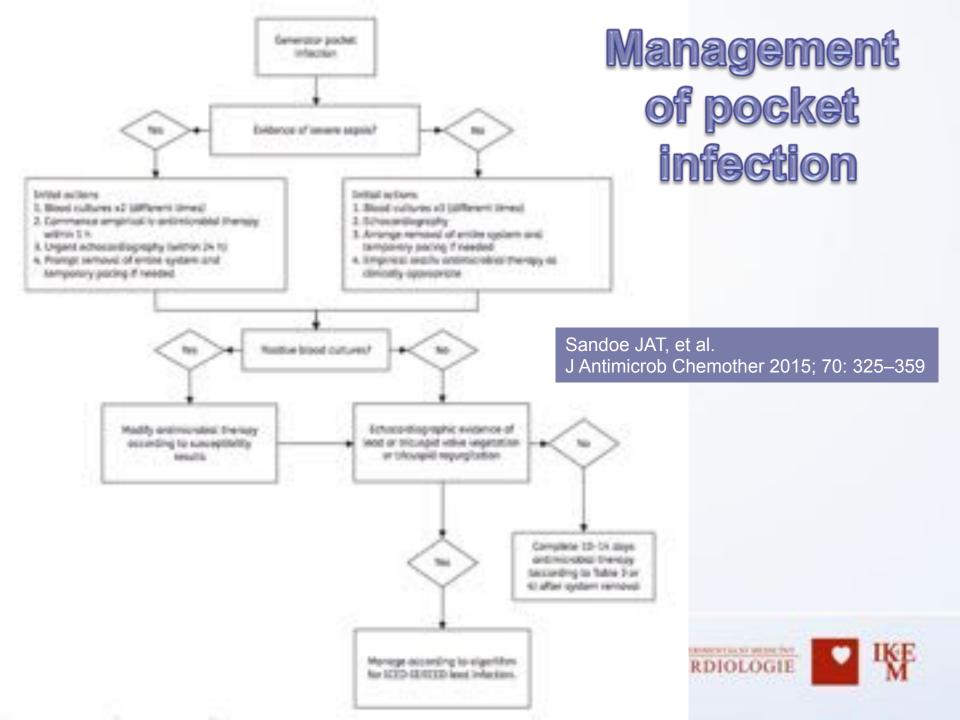
Nov E, Epstein LM. Eur Heart J (2013) 34, 229–235

KLINIKA KARDIOLOGIE



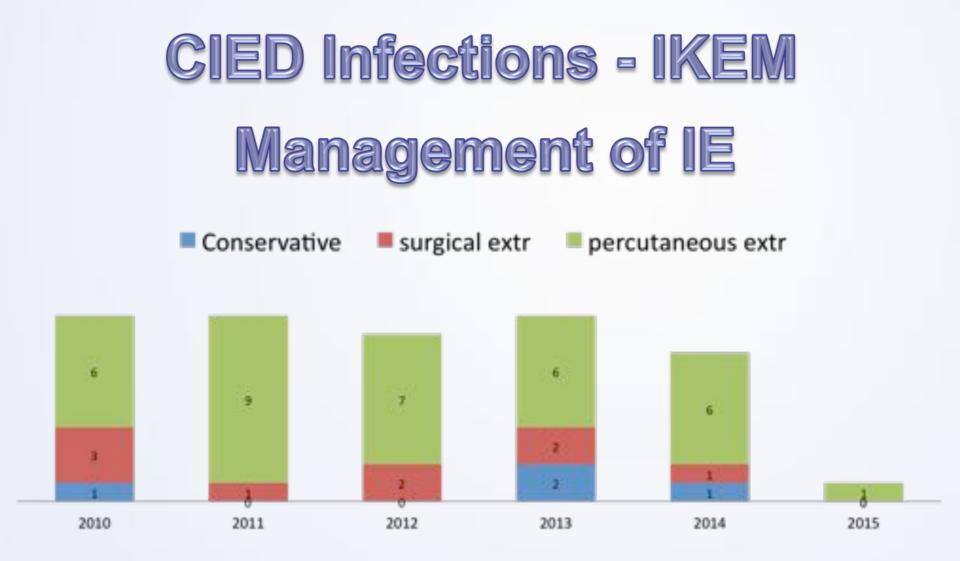
Management of early postimplantation inflammation (UK Guidelines)

Sandoe JAT, et al. J Antimicrob Chemother 2015; 70: 325–359

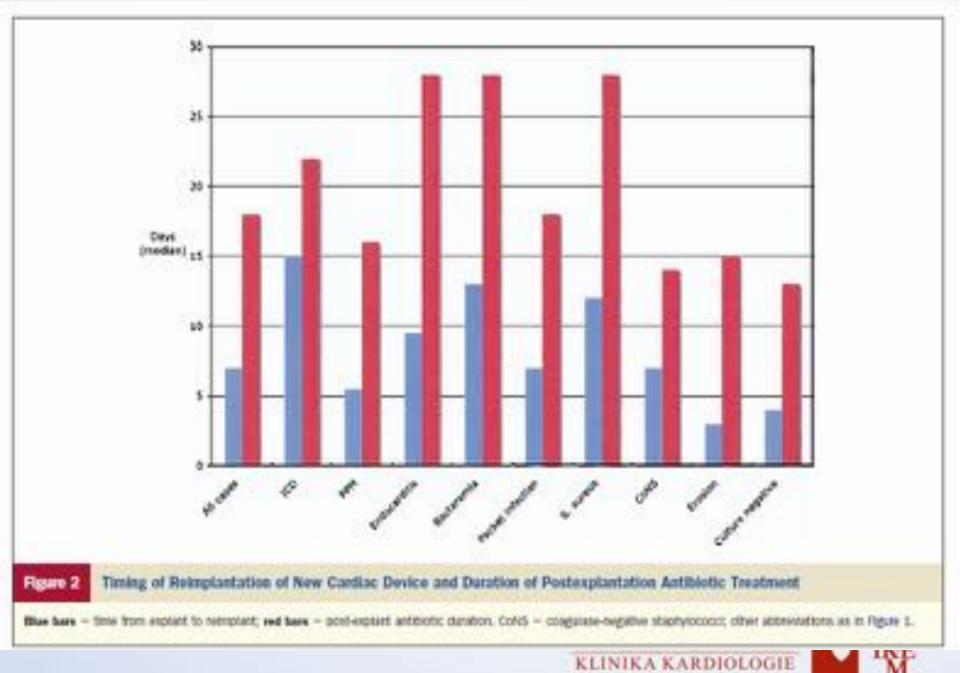


Management of suspected CIED IE/lead infection

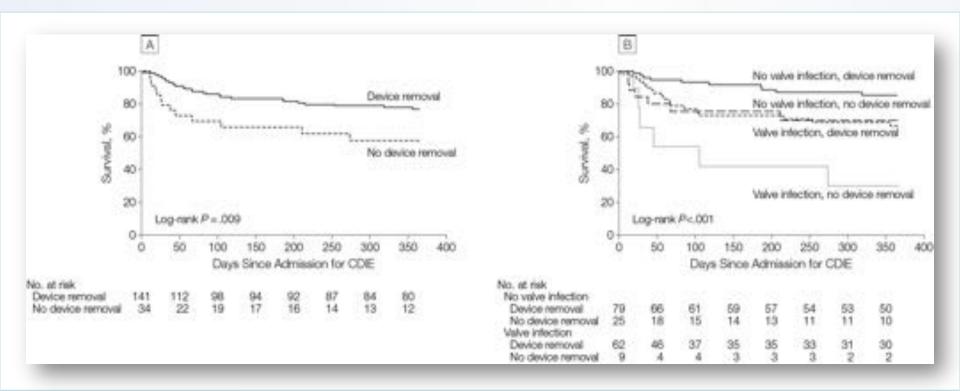
Sandoe JAT, et al. J Antimicrob Chemother 2015; 70: 325– 359



Indications for System Extraction


Definite CIED infection with Lead endocarditis Valvular endocarditis Pocket infection with abscess formation Superficial erosion Chronic draining sinus Occult Gram-positive bacteremia Persistent occult Gram-negative bacteremia Valvular endocarditis without evidence of device infection CIED indicates cardiac implantable electronic device.

Mulpuru Sk, et al. Circulation. 2013;128:1031-1038.


Sohail et al. J ACC 2007;49:1851-1859

Prognosis

One-year survival related to device removal vs no removal during index hospitalization,

177 CIED IE out of 2760 IE cases

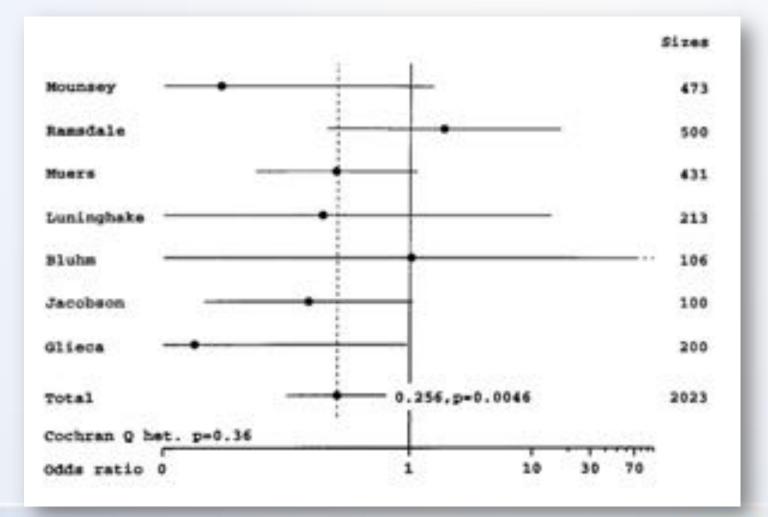
Athan E, et al. JAMA. 2012;307(16):1727-1735

Prognosis of CIED Infection

- Infection endocarditis has poor prognosis (24.5-29 %) with FU up to one year
- Pocket infection is associated with much less mortality (5-6 %)
- Abnormal renal function is the most consistently identified risk factor for mortality
- Failure to remove an infected device is associated with relapse and mortality

Sandoe JAT, et al. J Antimicrob Chemother 2015; 70: 325–359

Prevention



Preventing Infections of CIEDs

- Meticulous attention to sterile technique
- Antibiotic Prophylaxis
- Procedure room
 - Positive pressure ventilation
 - Control Room
- Skin Preparation
- Wound Irrigation
- Skin Closure

Antibiotic Prophylaxis

Da Costa A, et al. Circulation. 1998;97:1796-1801

Prevention of infection

Tyrx (Absorbable Antibacterial Envelope)

Rifampin and Minocycline

Collatamp 5x5x0.5cm

• gentamicinum, colagen

AIGISRx® minocycline and rifampin-eluting antibacterial envelope (TyRX Inc., Monmouth Junction, NJ, USA)

A total of 260 antibacterial envelopes implanted (November 1, 2009 to April 30, 2012) Control group (n=639) matched by age, sex and risk factors (2.8 ± 1.2)

Cardiac Implantable Electronic Device Infections among Cases and Controls

	Infections (n, %)	Unadjusted OR	P Value	Adjusted OR	P Value
Entire Cohort					
AIGISRx@ Cases (n = 260)	1 (0,4%)	0.13 (0.02-0.95)	0.044	0.09 [0.01-0.73]	0.024
Controls (n = 639)	19 (3%)				
Propensity Score-Matched Cohort					
AIGISRx@ Cases (n = 209)	1 (0.5%)	0.11 [0.01-0.85]	0.035	-	-
Controls (n = 209)	9(43%)				

CIED = cardiac implantable electronic device; OR = odds ratio, followed by 95% confidence interval.

Kolek, MR, et al. PACE 2013; 36(3): 354-361

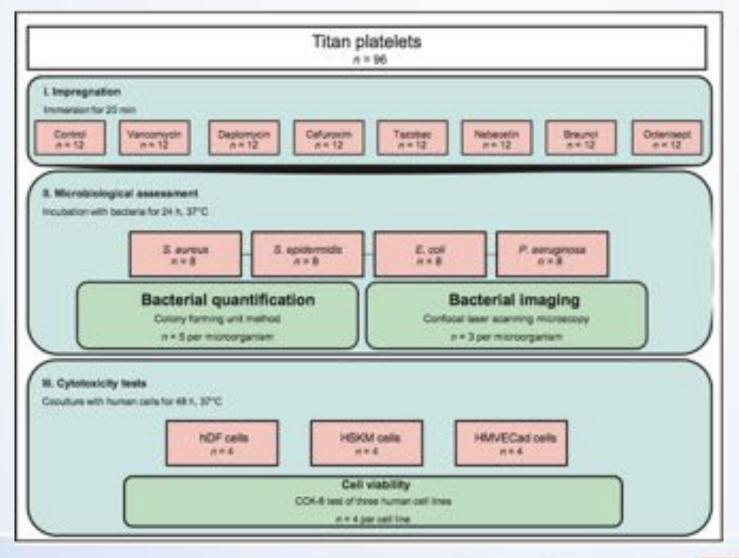
Cost Analysis of Antibacterial Envelope

	N	Infection Rate (N)	Infection care cost	Differential cost*
All Patients	365	1.71% (6.20)	\$342,854	\$23,863
Preoperative risk score <3	179	1.03% (1.85)	\$101,708	- \$54,729
Preoperative risk score ≥3	186	2.45% (4.55)	\$250,115	\$87,560
Early Reintervention	12	6.67% (0.80)	\$43,941	\$33,453

Infection Rate	Infections	Infection care cost	Differential cost*
0.56%	2.03	\$111,346	- \$205,023
1.59%	5.76	\$316,371	\$2
1.93%	7.00	\$384,481	\$68,112
4.3%	15.57	\$854,976	\$538,607

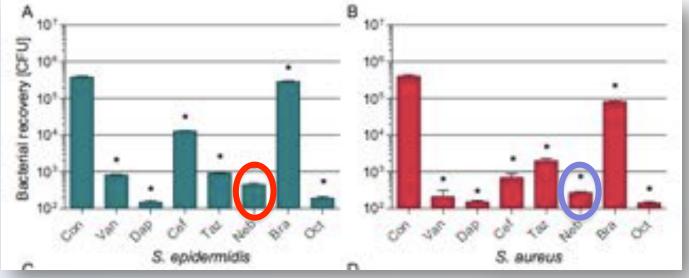
Shariff N, et al. JCE 2015 Apr 6

ATB - Antiseptics - Local ATB

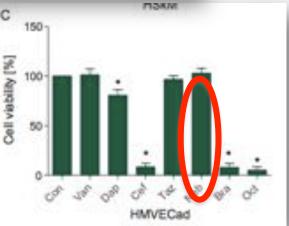

	PSA + antiseptic Antis			ptic		Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rand	lom, 95% Cl	
Bluhm 1984	1	50	7	50	22.9%	0.14 [0.02, 1.12]			
Bluhm 1986	0	50	0	52		Not estimable	A 2521		
De Oliveira 2009	2	314	11	335	43.2%	0.19 [0.04, 0.87]			
Glieca 1987	0	100	12	100	12.3%	0.04 [0.00, 0.67]			
Lüninghake 1993	0	136	1	106	9.5%	0.26 [0.01, 6.33]		-	
Mounsey 1994	0	224	9	249	12.1%	0.06 [0.00, 1.00]			
Total (95% CI)		874		892	100.0%	0.13 [0.05, 0.36]	+		
Total events	3		40			1. Contraction of the second second			
Heterogeneity: Tau ⁴ =	0.00; Ch# = 1	1.57, df =	4 (P=0.	81); P	- 0%			1 10 1000	
Test for overall effect:	Z = 4.02 (P <	0.0001)	84.85 B	1.25%			0.001 0.1 PSA + antiseptic	1 10 1000 Antiseptic	

	PSA + local an	tiseptic	Local antibio'+ a	ntisepť		Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	6 <u> </u>	M-H, Rand	iom, 95% Cl	
Bluhm 1985	0	53	2	52	24.8%	0.20 [0.01, 3.99]				
Ucchino 1982	2	38	3	34	75.2%	0.60 [0.11, 3.36]		_	-	
Total (95% Ci)		91		86	100.0%	0.45 [0.10, 2.03]		-	-	
Total events	2		5							
Heterogeneity: Tau ^a =	0.00; Chi# = 0.40,	df = 1 (P	= 0.53); * = 0%				0.001	0.1	10	4000
Test for overall effect:	Z = 1.04 (P = 0.30))						ocal antiseptic	1 10 Local antibic	1000 +antiseptic

Darouiche R, et al. PACE 2012; 35:1348-1360


Antimicrobial Pretreatment of CIEDs

Marsch G, et al. Europace (2014) 16, 604-611



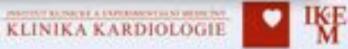
Antimicrobial Pretreatment of CIED

Impact of bacterial pretreatment of pacemaker castings on bacterial adherence.

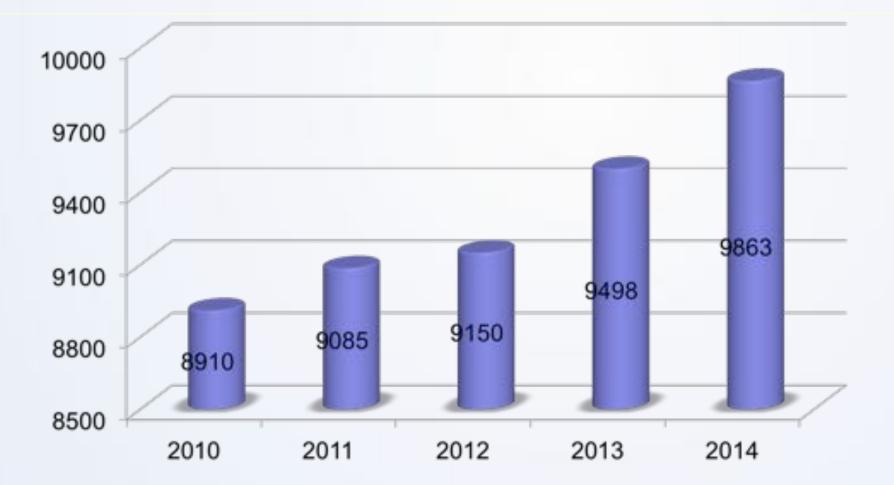
Proliferation of microvascular endothelial cells in the presence of antimicrobially treated castings

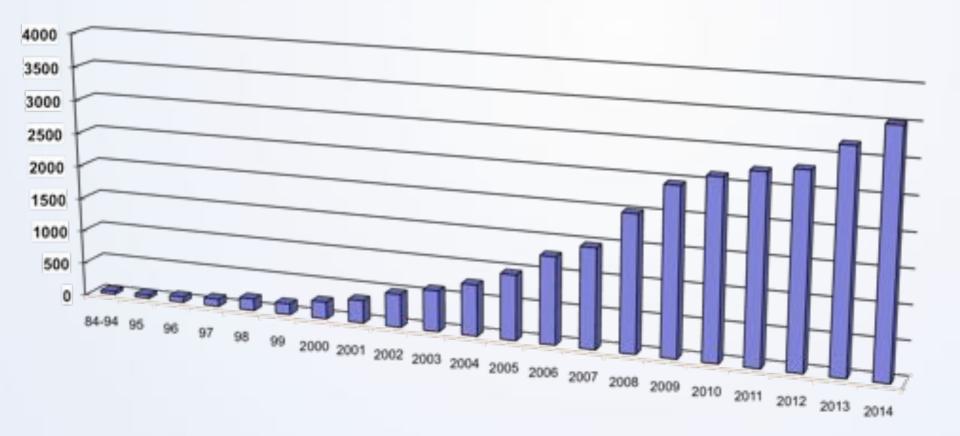
Nebacetin appears to be safe and effective candidate for CIED impregnation

Marsch G, et al. Europace (2014) 16, 604-611



- Number of CIEDs are increasing
- CIED infections complicate patient care
- Cure of infection may be difficult to achieve without device removal
- Prevention focuses on implant technique, sterile environment, ATB prophylaxis and adequate volume


- Future developments should be directed toward:
 - -- devices more resistant to infection
 - -- antimicrobial envelopes
 - -- antimicrobial agents with enhanced activity
 - -- staphylococcal vaccines



Czech Pacemaker Registry – (2010- 2014)

Czech ICD Registry - (1984 - 2014)

