Predictors of Survival in Hospitalized Patients with Dilated Cardiomyopat ----a single cohort study

Wei HUA, M.D. FHRS Fu Wai Hospital, Beijing, China

Declaration of Interest

• Nothing to disclose.

- All cause Mortality in patients with Ischemic Cardiomopathy is very high. Predictors of Survival in those patients were fully studied.
- Post-MI patients for at least 40 days with an LVEF ≤35% are at high risk of sudden cardiac death (SCD) and should receive prophylactic implantation of implantable cardioverter defibrillator (ICD) according to guideline_{an X, Hua W, Xu Y, et al. Heart. 2014;100(16):1242-9.}

Epidemiology of nonischemic cardiomopathy

- High morbidity
- Poor prognosis
 - 5-year survival is less than 50%
- Prediction of death in patients with nonischemic cardiomopathy is still challenging

Predictors of Survival in Hospitalized Patients with DCM

- Age
- Gender
- Race
- NYHA class
- Left ventricular ejection fraction
- Left ventricular end
 -diastolic dimension
- LA diameter
- Left bundle branch block
- Systolic blood pressure
- NSVT on Holter monitoring

- Presence of AF/PVC
- B-natriuretic peptide level
- FBG
- V02max
- Pulmonary artery systolic pressure
- Optimal medical therapy
- QRS duration
- Subclinical thyroid dysfunction
- Late gadolinium enhancement by CMR
- others

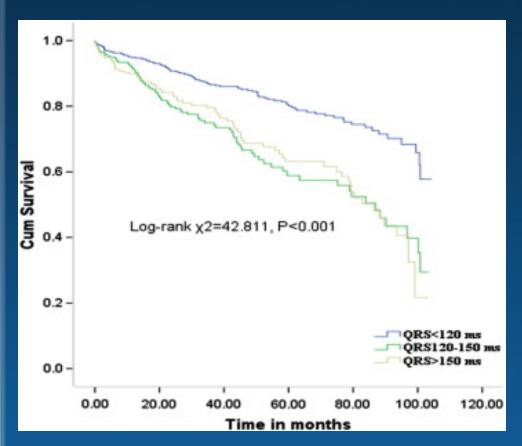
- Correlation between QRS prolongation and DCM survival is limited
- No data on the association between subclinical thyroid dysfunction and survival in DCM

Predictors of Survival in Hospitalized Patients with DCM

- >QRS Duration
- Subclinical Thyroid Dysfunction

Methods

- Hospitalized from November 2003 to September 2011 in Fu **W**ai Hospital
- A total of 1317 patients with DCM were enrolled,
- DCM was difined as systolic dysfunction(LVEF<50%) and left ventricular dilatation and Absence of an apparent secondary cause of cardiomyopathy


• The primary end point : all-cause mortality

Xiaoping Li, Wei Hua et al. International Journal of Cardiology. 2013, 4979 -

Methods

- 1317 patients with DCM were enrolled, 1119 patients with DCM were finally analysised.
- Mean age: 51.1 ±14.7 years;
- Male: 73.4%
- Mean LVEF 31.9%
- LVD 68 mm
- The mean follow-up period was 3.5 ± 2.3 years

QRS duration and survival curves for patients with dilated cardiomyopathy

- •Mean follow-up of 3.5 \pm 2.3 years
- •268 (23.9%) died
- •all-cause mortality rates were:
 - -highest in the patients with QRS >150 ms (n = 72, 33.3%)
 - -intermediate in those with QRS = 120 150 ms (n = 85, 33.1%)
 - -lowest in those with QRS <120 ms (n =111, 17.2%)

Xiaoping Li, Wei Hua et al . International Journal of Cardiology, 2014, 475–

Results

•Patients with QRS ≥120 ms had a higher all -cause mortality rate than those with QRS <120 ms

•

- •No difference was found in the all-cause mortality rate between patients with QRS > 150 ms and patients with QRS=120 150 ms
- •QRS duration was a strong predictor of all -cause mortality in patients with DCM even after adjustment for the classic risk

Predictors of Survival in Hospitalized Patients with DCM

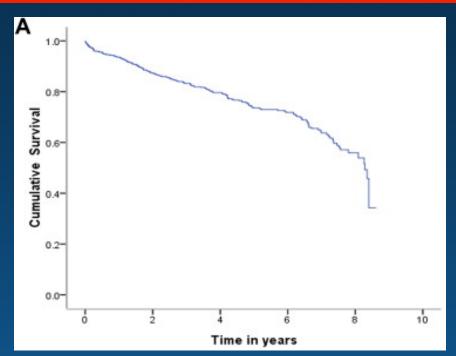
>QRS Duration

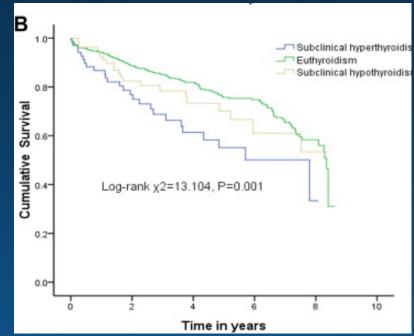
Subclinical Thyroid Dysfunction

Methods

- A total of 1317 patients with DCM were enrolled, among them 963 DCM patients were evaluated for thyroid function
 - 7.1% (n=568) had subclinical hyperthyroidism
 - 84.7% (n=5816) had euthyroidism
 - 8.2%(n=579) had subclinical hypothyroidism
- 42.3% of the patients were newly diagnosed, and 57.7% were established DCM patients
- The end point of the study was all-cause mortality

Univariate and Multivariate Logistic Regression in DCM Patients


Table 2. Univariate and Multivariate Logistic Regression in Dilated Cardiomyopathy Patients


Variable	Univariate Analysis			Multivariate Analysis			
	HR	95% CI	P Value	HR	95% CI	P Value	
Subclinical hypothyroidis	m						
Age	1.006	0.990-1.022	.469	0.998	0.981-1.016	.833	
Sex	1.332	0.810-2.191	.259	0.873	0.489 - 1.559	.646	
NYHA	1.179	0.880 - 1.580	.271	1.109	0.806 - 1.527	.524	
Disease duration	1.043	1.012-1.074	.006*	1.038	1.005-1.073	.024*	
Smoking status	0.637	0.476-0.854	.003*	0.666	0.470-0.946	.023*	
Drinking status	0.745	0.538-1.031	.076	0.850	0.581 - 1.244	.403	
FT ₃	0.650	0.419-1.008	.054	1.137	0.619-2.086	.679	
FT ₄	0.133	0.050-0.349	<.001*	0.212	0.067-0.670	.008*	
T_3	0.525	0.271-1.020	.057	0.997	0.415-2.399	.995	
T_4	0.799	0.716-0.892	<.001*	0.865	0.744 - 1.004	.057	
Subclinical hyperthyroidis	sm						
Age	1.028	1.008-1.048	.005*	1.034	1.011-1.057	.004*	
Gender	1.478	0.875-2.496	.144	1.874	0.903-3.891	.092	
NYHA	1.893	1.342-2.670	<.001*	2.140	1.466-3.124	<.001*	
Disease duration	1.031	0.997-1.066	.070	1.008	0.970 - 1.047	.686	
Smoking status	1.463	1.013-2.115	.043*	1.151	0.880 - 1.506	.306	
Drinking status	1.014	0.747 - 1.377	.930	0.968	0.669 - 1.400	.862	
FT_3	1.451	1.106-1.905	.007*	1.663	1.148-2.406	.008*	
FT ₄	0.989	0.905 - 1.080	.802	1.004	0.905-1.114	.938	
T_3	2.045	1.334-3.134	.001*	1.954	1.174-3.253	.010*	
T ₄	0.994	0.966 - 1.024	.692	0.946	0.844 - 1.061	.345	

Univariate and Multivariate Logistic Regression in DCM Patients

- Multivariate logistic analysis indicated that subclinical hypothyroidism was associated with serum FT4 levels, disease duration, and smoking status.
- Subclinical hyperthyroidism was associated with age, NYHA functional class, and serum FT3 and T3 levels.

Kaplan-Meier Survival Curves for Patients with Dilated Cardiomyopathy

There was a significant difference in the all-cause mortality rate between patients with euthyroidism and patients with subclinical hyper- and hypothyroidism (21%, 38.2%, and 26.6%, respectively; log-rank \(\mathbb{X} 2=13.104; P=0.001) \)

Xiaoping Li, Wei Hua, Journal of Cardiac Failure. Volume 20, Issue 7, July 2014, Pages 506 - 512

Cox Regression of All-Cause Mortality in the Dilated Cardiomyopathy Patients

Table 3. Cox Regression of All-Cause Mortality in the Dilated Cardiomyo	yopathy	y Patients
---	---------	------------

	Univariate Analysis			Multivariate Analysis		
Variable	HR	95% CI	P Value	HR	95% CI	P Value
Age	1.010	1.000-1.019	$.046^{\dagger}$	0.999	0.988-1.012	.970
Sex	1.186	0.884 - 1.590	.255	1.188	0.810 - 1.742	.379
Diabetes mellitus	0.926	0.629 - 1.347	.670	0.810	0.523-1.256	.347
Atrial fibrillation	1.380	1.030-1.848	.031 [†]	1.287	0.902 - 1.836	.164
Ventricular tachy cardia	1.006	0.711 - 1.423	.973	0.921	0.620 - 1.369	.683
NYHA	1.648	1.376-1.972	$<.001^{\dagger}$	1.247	1.006-1.546	.044 [†]
Smoking status	0.924	0.795 - 1.075	.307	0.974	0.799-1.188	.798
Drinking status	0.835	0.701-0.996	.045 [†]	0.823	0.661 - 1.026	.083
Disease duration	1.028	1.010-1.046	$.002^{\dagger}$	1.012	0.991 - 1.034	.258
QRS duration	1.009	1.005-1.013	<.001 [†]	1.009	1.004-1.013	<.001 [†]
LV diameter	1.037	1.023-1.051	<.001 [†]	1.009	0.991 - 1.029	.326
LA diameter	1.055	1.038-1.073	$<.001^{\dagger}$	1.038	1.017-1.060	<.001 [†]
LVEF	0.967	0.951-0.983	<.001 [†]	0.990	0.971 - 1.010	.339
FT ₃	0.503	0.392-0.645	<.001 [†]	0.779	0.562 - 1.081	.135
FT ₄	0.831	0.629 - 1.098	.193			
T_3	0.418	0.278 - 0.628	$<.001^{\dagger}$	0.844	0.500 - 1.425	.525
T ₄	0.922	0.870-0.976	.005 [†]	0.978	0.922 - 1.037	.454
Subclinical hyperthyroidism	2.041	1.354-3.077	.001 [†]	2.068	1.068-4.006	.031 [†]
Subclinical hypothyroidism	1.184	0.754 - 1.858	.464	1.144	0.696 - 1.880	.596
NT-proBNP*	4.947	3.031-8.074	<.001 [†]	2.465	1.398-4.348	.002 [†]
Amiodarone	1.079	0.720-1.617	.713	0.993	0.358-2.755	.989

The Cox multivariate analysis indicated that:

- -subclinical hyperthyroidism were significant predictors of all-cause mortality in the DCM patients
- -subclinical hypothyroidism were not significant predictors of all-

Conclusion

Patients with Dilated Cardiomyopathy and QRS ≥120

had a higher all-cause mortality rate than those with

QRS < 120 ms. No difference was found in the all-cause mortality rate between patients with QRS > 150 ms and patients with QRS=120 - 150 ms

•Subclinical hyperthyroidism, but not subclinical hypothyroidism, was a predictor of all-cause mortality with adjustment baseline variables in DCM patients

Thanks for your attention!