

Non Invasive Hemodynamic Optimization of Cardiac Resynchronization Therapy with Multipoint Left Ventricular Pacing: A Multicenter pilot Experience

> Danilo Ricciardi, MD Cardiovascular Sciences Department Campus Bio-Medico University of Rome d.ricciardi@unicampus.it

MultiPointTM Pacing (MPP) Technology

MultiPointTM Pacing (MPP) Technology

Europace (2013) 15, 984-991 doi:10.1093/europace/eus435 CLINICAL RESEARCH Pacing and resynchronization therapy

Acute haemodynamic comparison of multisite and biventricular pacing with a quadripolar left ventricular lead

Bernard Thibault^{1*}, Marc Dubuc¹, Paul Khairy¹, Peter G. Guerra¹, Laurent Macle¹, Lena Rivard¹, Denis Roy¹, Mario Talajic¹, Edward Karst², Kyungmoo Ryu², Patrice Paiement³, and Taraneh G. Farazi²

Determining the optimal pacing vector and interventricular delay can be a challenge

Multipoint left ventricular pacing improves acute hemodynamic response assessed with pressure-volume loops in cardiac resynchronization therapy patients

Carlo Pappone, MD, PhD, Žarko Ćalović, MD, Gabriele Vicedomini, MD, Amarild Cuko, MD, Luke C. McSpadden, PhD, Kyungmoo Ryu, PhD, Enrico Romano, BEng, Massimo Saviano, MD, Mario Baldi, MD, Alessia Pappone, MD, Cristiano Ciaccio, MD, Luigi Giannelli, MD, Bogdan Ionescu, MD, Andrea Petretta, MD, Raffaele Vitale, MD, Angelica Fundaliotis, MD, Luigi Tavazzi, MD, Vincenzo Santinelli, MD

Cheetah Medical Fluid Optimization Machines

Total	52 patients
Non invasive hemodynamic measurement possible	51 pts
Age	69.9±9.5 y
Atrial Fibrillation	4 pts (8.3%)
QRS duration	165.6±20.7 ms
LBBB	38 patient (73%)
LV Ejection Fraction	28.3±7.0%
Ischemic Heart Disease	30 pts (57.7%)
Acceptable pacing dipoles per quadripolar lead (10 available)*	6.3±2.8

*pacing threshold \leq 3 V at 0.5 ms and phrenic nerve stimulation threshold \geq 2 x capture threshold

Configuration	Stim 1	delay 1	Stim 2	delay 2	Stim 3
MP 1	RV	5 ms	LV+	5 ms	LV -
MP 2	RV	5 ms	LV +	30 ms	LV-
MP 3	RV	30 ms	LV+	5 ms	LV -
MP 4	LV +	5 ms	LV -	5 ms	RV
MP 5	LV +	5 ms	LV -	30 ms	RV
MP 6	LV +	30 ms	LV -	5 ms	RV
MP 7	RV	5 ms	LV -	5 ms	LV +
MP 8	RV	5 ms	LV -	30 ms	LV +
MP 9	RV	30 ms	LV -	5 ms	LV +
MP 10	LV -	5 ms	LV +	5 ms	RV
MP 11	LV -	5 ms	LV+	30 ms	RV
MP 12	LV -	30 ms	LV+	5 ms	RV

Configuration analysed	Explanation
Bost MPP	Multipoint configuration with highest CI measured
Wonst MPP	Multipoint configuration with the lowest CI measured
Mean MPP	Average value of the 12 multipoint configuration analysed
Best BiV	Biventricular configuration with the highest CI measured
Bost QRS	MPP or BiV configuration with the narrowest QRS measured

Variations in QRS duration

Comparison between ischemic and nonischemic patients

Comparison between LBBB and non-LBBB patients

MPP and BiV stimulation increased the cardiac output compared to spontaneous rhythm, but not every MPP configuration presents an amelioration of hemodynamics compared to baseline, best BiV or the narrowest QRS

The narrowest QRS almost never corresponds to the best Cardiac Index

Our study demonstrates the need for a customization of biventricular pacing of multisite stimulation device by measuring hemodynamic parameters.

Different MPP configurations were analysed with significant modifications of cardiac index and this was not related to the QRS morphology.

Evaluating the best hemodynamic condition of patients implanted with this device can guide programming at the time of implantation or re-programming in case of non-responders.

Danilo Ricciardi, MD Cardiovascular Sciences Department Campus Bio-Medico University of Rome d.ricciardi@unicampus.it